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Abstract. For every n ≥ 0, we construct classes in the Brown-Peterson coho-

mology BP 〈n〉 of smooth projective complex algebraic varieties which are not
in the image of the cycle map from the corresponding motivic Brown-Peterson

cohomology. This generalizes the examples of Atiyah and Hirzebruch to all

finite levels in the Brown-Peterson tower.

1. Introduction

Let X be a smooth projective complex algebraic variety. Let

cl : CH∗(X)→ H2∗(X(C);Z)

be the cycle map from Chow groups to the singular cohomology of the space X(C)
of complex points of X equipped with the analytic topology. Recall that classes in
the image of cl are called algebraic and that all algebraic classes are contained in
the subgroup of integral Hodge classes. However, it is well known that, in general,
not all integral Hodge classes are algebraic. There are basically two types of exam-
ples of non-algebraic Hodge classes, one type which can be detected by topological
methods and one type which cannot be detected by topological invariants. In [2],
Atiyah and Hirzebruch used the Atiyah-Hirzebruch spectral sequence to construct
an obstruction for elements being in the image of cl and provided, for every prime p,
examples of non-algebraic p-torsion classes using the Godeaux-Serre construction
of varieties associated to finite groups. In [19], Totaro showed that the Atiyah-
Hirzebruch obstruction can also be explained by the fact that cl factors through
the natural map ϑ̄ : MU2∗(X(C)) ⊗MU∗ Z → H2∗(X(C);Z), where MU∗(X(C))
denotes the complex cobordism of the space X(C). A crucial fact is that the map
ϑ̄ is neither surjective nor injective in general. In [8], Kollár provided examples
of varieties X and non-torsion classes α ∈ H4(X(C);Z) which are not algebraic
while a multiple of α is algebraic. In [16], Soulé and Voisin explain these exam-
ples in detail and show that there is no locally constant invariant that can detect
these examples. In particular, for those varieties, ϑ̄ is surjective. Moreover, Soulé
and Voisin construct other types of non-algebraic torsion classes which cannot be
explained by the obstruction of Atiyah-Hirzebruch and Totaro. We briefly discuss
further examples in Remark 4.7.

One way to define the cycle map for smooth complex varieties is to interpret it
as the natural map

cl : H2∗,∗
M (X;Z)→ H2∗(X(C);Z)

from motivic to singular cohomology induced by topological realization. The ad-
vantage of this definition for our purposes is that it immediately generalizes to other
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motivic cohomology theories. It is then a natural question what we can say about
the image of the corresponding cycle map for other motivic theories.

The purpose of this note is to show that the examples of Atiyah and Hirzebruch
can be generalized to produce non-algebraic classes in all levels of the tower of
Brown-Peterson cohomology theories which interpolate between singular cohomol-
ogy and the p-localization of complex cobordism.

To be more precise, for a prime p, let BP ∗(−) denote the Brown-Peterson coho-
mology for p (see [3] and [14]). For an integer n ≥ 0, let BP 〈n〉 be the associated
intermediate theory studied in [21]. These cohomology theories fit, for any topo-
logical space Y , into a sequence

BP ∗(Y )→ · · · → BP 〈n〉∗(Y )→ · · · → BP 〈0〉∗(Y ) = H∗(Y ;Z(p)).

For every p and n, there is a corresponding motivic Brown-Peterson cohomology
which we denote by BP 〈n〉∗,∗M (X) (see [20], [5, §6.4] and [10, §3]). For every i and j,
the topological realization functor from the motivic to the classical stable homotopy
category induces a natural homomorphism

BP 〈n〉i,jM(X)→ BP 〈n〉i(X(C))

to the Brown-Peterson cohomology of the space X(C).
For given p and n, we write w(n) := pn + pn−1 + · · ·+ p+ 1. Our main result is

the following.

Theorem. For every prime p and every integer n ≥ 0, there is a smooth projective
complex algebraic variety X and an element bn ∈ BP 〈n〉2w(n)+2(X(C)) which is
not in the image of the map

cln : BP 〈n〉2w(n)+2,∗
M (X)→ BP 〈n〉2w(n)+2(X(C)).

The proof of the theorem can be summarized as follows. We start with the
fundamental stable cofiber sequence

Σ2(pn−1)BP 〈n〉 vn−→ BP 〈n〉 → BP 〈n− 1〉.

It yields a well known obstruction for elements being in the image of the map
ρn+1
n : BP 〈n+ 1〉∗(X(C))→ BP 〈n〉∗(X(C)) provided by Milnor operations in mod
p-cohomology H∗(X(C);Fp). However, it also provides a tool to lift elements from

H∗(X(C);Fp) to BP 〈n〉∗+2w(n)−n−1(X(C)). We apply this observation to the ele-
mentary abelian p-group Gn+3 := (Z/p)n+3, for any prime number p, and construct
explicit elements in BP 〈n〉∗(BGn+3) which are not contained in the image of the
map ρn+1

n : BP 〈n + 1〉∗(BGn+3) → BP 〈n〉∗(BGn+3). Finally, we use these ele-
ments to prove the theorem for a Godeaux-Serre variety X associated to Gn+3.

Our argument relies on the fact that ρn is not surjective in high degrees for the
particular variety we consider. Wilson showed in [21] that, for any finite complex Y
and all k ≤ 2w(n), the map ρn : BP k(Y ) → BP 〈n〉k(Y ) is surjective. The degree
in which the examples of the theorem occur is hence minimal for our argument.

In Remark 4.6, we will briefly discuss a different type of argument for complex
cobordism which uses the surjectivity of the map MU2∗(X(C)) → H2∗(X(C);Z)
for Kollár’s examples.

Acknowledgements. We are grateful to Claire Voisin for mentioning the ar-
gument of Remark 4.6 to us and for further very helpful comments. We would also
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like to thank Mike Hopkins and John Rognes for very helpful conversations, and the
anonymous referee for helpful suggestions to improve the exposition of the paper.

2. Obstructions and liftings

Let p be a prime number and n ≥ 0 be an integer. Let BP denote the spectrum
representing Brown-Peterson cohomology for p defined in [3], and let BP 〈n〉 be
the spectrum representing the associated intermediate theory for p and n studied
by Wilson in [21]. For n = 0, one has BP 〈0〉 = HZ(p), the Eilenberg-MacLane
spectrum for Z(p), and, for n = −1, we use the notation BP 〈−1〉 := HFp for the
mod p-Eilenberg-MacLane spectrum. For every j > n ≥ −1, these theories are
connected by canonical maps

ρn : BP → BP 〈n〉 and ρjn : BP 〈j〉 → BP 〈n〉.
The coefficient rings are given by the polynomial algebras BP ∗ ∼= Z(p)[v1, v2, . . .]

and BP 〈n〉∗ ∼= Z(p)[v1, . . . , vn]. The effect of the maps ρn and ρjn is to send all vi
with i > n to 0.

Recall that, for every n ≥ 1, there is a stable cofiber sequence

Σ2(pn−1)BP 〈n〉 vn−→ BP 〈n〉
ρnn−1−−−→ BP 〈n− 1〉 qn−→ Σ2(pn−1)+1BP 〈n〉.

For every space Y , this sequence induces a natural exact sequence

BP 〈n〉i+2(pn−1)(Y )
vn−→ BP 〈n〉i(Y )

ρnn−1−−−→ BP 〈n− 1〉i(Y )
qn−→ BP 〈n〉i+2pn−1(Y )

where, by abuse of notation, we denote the induced maps on cohomology groups
by the same symbols.

By [21, Proposition 1.7] (see also [12, Lemma 2.4] and [18, Proposition 4-4])),
the map qn : BP 〈n − 1〉i(Y ) → BP 〈n〉i+2pn−1(Y ) corresponds, possibly up to a
sign, to the nth Milnor operation Qn in mod p-cohomology in the sense that there
is a commutative diagram

BP 〈n〉∗(Y )
ρnn−1 //

ρn−1 ''

BP 〈n− 1〉i(Y )

ρn−1
−1

��

qn // BP 〈n〉i+2pn−1(Y )

ρn−1

��
Hi(Y ;Fp) ±Qn

// Hi+2pn−1(Y ;Fp).

(1)

Hence, since the top row of diagram (1) is exact, Qn yields an obstruction to lifting
an element from BP 〈n− 1〉∗(Y ) to BP 〈n〉∗(Y ) via ρnn−1.

On the other hand, we can use the maps qn to produce explicit classes in
BP 〈n〉∗(Y ). Recall that the degree of Qi is |Qi| = 2pi − 1 and hence

n∑
i=0

|Qi| =
n∑
i=0

(2pi − 1) = 2w(n)− n− 1

where we set w(n) := pn + · · ·+ 1. Successive composition of the maps qi yields a
diagram which commutes (possibly up to sign)

HFp
q0 //

±Qn+1···Q0

��

Σ|Q0|BP 〈0〉
q1 // Σ|Q0|+|Q1|BP 〈1〉

q1 // · · ·
qn // Σ2w(n)−n−1BP 〈n〉

qn+1

��
Σ2w(n+1)−n−2HFp Σ2w(n+1)−n−2BP 〈n+ 1〉.

ρn+1
−1

oo
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Hence, for every Y , there is a commutative diagram
(2)

BP 〈n+ 1〉∗+2w(n)−n−1(Y )
ρn+1
n // BP 〈n〉∗+2w(n)−n−1(Y )

qn+1 // BP 〈n+ 1〉∗+2w(n+1)−n−2(X)

ρn+1
−1

��
H∗(Y ;Fp)

qn···q0

OO

±Qn+1···Q0

// H∗+2w(n+1)−n−2(Y ;Fp)

where the top row is exact. This yields the following criterion.

Lemma 2.1. If x ∈ H∗(Y ;Fp) satisfies Qn+1 · · ·Q0(x) 6= 0, then

qn · · · q0(x) ∈ BP 〈n〉∗+2w(n)−n−1(Y )

is a non-trivial element which is not contained in the image of

ρn+1
n : BP 〈n+ 1〉∗(Y )→ BP 〈n〉∗(Y ).

Remark 2.2. In [21], Wilson showed that, for every space Y and integer n ≥ 0,
the natural homomorphism

BP k(Y )→ BP 〈n〉k(Y )

is surjective for k ≤ 2w(n). Hence the lowest even degree in which we can hope to
find classes in BP 〈n〉k(Y ) which cannot be lifted to BP 〈n+1〉k(Y ) is k = 2w(n)+2.
This means that an element x ∈ H∗(Y ;Fp) with the properties in Lemma 2.1 must
be of degree at least n+ 3.

3. BP 〈n〉-classes for elementary abelian p-groups

In this section, we look at the BP 〈n〉-cohomology of the classifying spaces of
elementary abelian p-groups. The generalized cohomology of such spaces is a well
studied subject in the literature (see e.g. [12] and [17] for the case BP 〈n〉). The
goal of this section is merely to specify concrete elements with the properties needed
to apply Lemma 2.1. The cases p = 2 or p odd are very similar. However, for the
convenience of the reader, we provide the computations for both cases separately.
To simplify the notation, for G a group and h a cohomology theory, we write h∗(G)
for h∗(BG+), where BG denotes the classifying space of G.

3.1. Non-liftable BP 〈n〉-classes for p = 2. We start with the case p = 2. Recall
that Milnor’s operations

Qn : Hi(X;F2)→ Hi+2n+1−1(X;F2)

are defined inductively in terms of Steenrod squares by

Q0 = Sq1,

Qn+1 = Sq2n+1

Qn +QnSq
2n+1

.

A very convenient fact about the Qns is that they are primitive elements of the
Steenrod algebra, i.e.,

(3) Qn(xy) = Qn(x)y + xQn(y).

Let Gk be the k-fold product of Z/2, i.e., Gk = (Z/2)k. The F2-cohomology of
Gk is given by the formula

H∗((Z/2)k;F2) ∼= F2[x1, . . . , xk].
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Lemma 3.1. Let x be a polynomial generator of H∗((Z/2)k;F2). For i ≥ 0, the
Milnor operation Qi acts on x by

Qi(x) = x2i+1

(4)

Qi(x
2n) = 0 for all n ≥ 1.(5)

Proof. For i = 0, we have Q0(x) = Sq1(x) = x2. For i ≥ 1, we proceed by induction
using (3) and get

Qi(x) = (Sq2i

Qi−1 +Qi−1Sq
2i

)(x) = Sq2i

(x2i) +Qi−1(0) = x2i+1

.

Formula (5) follows immedtiately from (3), since it implies that Qn is a derivation.
Hence Qi(x

2n) = 2nx2n−1Qi(x) = 0 modulo 2. �

Lemma 3.2. For m ≤ k, let x1, . . . , xm be distinct polynomial generators of
H∗((Z/2)k;F2). The effect of the iterated Milnor operations on the product x1 · · ·xm
is given by

QnQn−1 · · ·Q1Q0(x1 · · ·xm) = 0 for m ≤ n(6)

QnQn−1 · · ·Q1Q0(x1 · · ·xm) =
∑

xj11 x
j2
2 · · ·xjmm for m ≥ n+ 1(7)

where the sum is taken over all cyclic permutations (j1, . . . , jm) of the set of m
numbers {2n+1, 2n, . . . , 21, 1, . . . , 1} with m − (n + 1) many 1’s. In particular, we
get

QnQn−1 · · ·Q1Q0(x1 · · ·xm) 6= 0 for m ≥ n+ 1.

Proof. For n = 0, Lemma 3.1 and equation (3) imply

Q0(x1 · · ·xm) = x2
1x2 · · ·xm + x1x

2
2 · · ·xm + · · ·+ x1x2 · · ·x2

m

where in each summand there is exactly one exponent equal to 2 and all others are
equal to 1. This proves the case n = 0. For n = 1 and m = 1, we have

Q1Q0(x1) = Q1(x2
1) = 0

by (5). Hence equations (6) and (7) hold for n = 0 and the case n = 1 and
m = 1. For n ≥ 1 and m ≥ 1, we proceed by induction. If m ≤ n − 1, then
Qn−1 · · ·Q1Q0(x1 · · ·xm) = 0 by the induction hypothesis. So assume m ≥ n. By
the induction hypothesis, we have

QnQn−1 · · ·Q1Q0(x1 · · ·xm) = Qn(
∑

xj11 x
j2
2 · · ·xjmm )

where the sum is taken over all permutations (j1, . . . , jm) of the set of m numbers
{2n, 2n−1, . . . , 21, 1, . . . , 1}. For each summand, equation (3) implies

Qn(xj11 x
j2
2 · · ·xjmm ) = Qn(xj11 )(xj22 · · ·xjmm ) + xj11 Qn(xj22 · · ·xjm)

m )

= Qn(xj11 )(xj22 · · ·xjmm ) + xj11 (Qn(xj22 )(xj33 · · ·xjmm ) + xj22 Qn(xj33 · · ·xjmm ))

...

= Qn(xj11 )xj22 · · ·xjmm + xj11 Qn(xj22 )xj33 · · ·xjmm + · · ·+ xj11 · · ·x
jm−1

m−1Qn(xjmm ).(8)

Ifm = n, then each (j1, . . . , jn) is a bijection of {1, . . . ,m} with {2n, 2n−1, . . . , 22, 21}.
In particular, we have ji ≥ 2 for all i = 1, . . . , n. By formula (5), this implies that

Qn(xjii ) = 0 for i = 1, . . . , n. Hence, if m = n, line (8) is equal to zero. This finishes
the proof of equation (6).
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If m ≥ n+ 1, then we have Qn(xjii ) = 0 if ji ≥ 2 by (5) and Qn(xjii ) = x2n+1

i if
ji = 1 by (4). This implies that, for a fixed permutation (j1, . . . , jm) of the set of

m numbers {2n, 2n−1, . . . , 21, 1, . . . , 1}, the element Qn(xj11 x
j2
2 · · ·xjmm ) is the sum

of terms of the form xj11 · · ·x
ji−1

i−1 x
2n+1

i x
ji+1

i+1 · · ·xjmm , one summand for each i with
ji = 1. Taking the sum over all cyclic permutations (j1, . . . , jm) of the set of m
numbers {2n, 2n−1, . . . , 21, 1, . . . , 1} (m− n many 1’s), then yields

QnQn−1 · · ·Q1Q0(x1 · · ·xm) =
∑

x
j′1
1 x

j′2
2 · · ·x

j′m
m

where the sum is taken over all cyclic permutations (j′1, . . . , j
′
m) of {1, . . . ,m} of

the set of m numbers {2n+1, 2n, . . . , 21, 1, . . . , 1} (m−n−1 many 1’s). This finishes
the proof of equation (7) and the lemma. �

Recall that the degree of Qi is |Qi| = 2i+1 − 1 and hence

n∑
i=0

|Qi| =
n∑
i=0

(2i+1 − 1) = 2n+2 − 2− (n+ 1) = 2n+2 − 3− n.

Proposition 3.3. Let n be an integer ≥ 0 and let k and m be integers such that
k ≥ m ≥ n+ 2. Let Gk = (Z/2)k and x1, . . . , xm be distinct polynomial generators
of H∗((Z/2)k;F2). Then the element qn · · · q0(x1 · · ·xm) is nontrivial in the group

BP 〈n〉m+2n+2−3−n(Gk) and is not contained in the image of the map

ρn+1
n : BP 〈n+ 1〉m+2n+2−3−n(Gk)→ BP 〈n〉m+2n+2−3−n(Gk).

Proof. We know by diagram (2) that

ρn+1
−1 qn+1(qn · · · q0(x1 · · ·xm)) = Qn+1 · · ·Q0(x1 · · ·xm) in Hm+2n+3−4−n(Gk;F2).

By Lemma 3.2, we know that Qn+1 · · ·Q0(x1 · · ·xm) nontrivial if m ≥ n+ 2. The
assertion then follows from Lemma 2.1. �

Remark 3.4. For our application to algebraic varieties, we are interested in ele-
ments in even degree in BP 〈n〉∗(Gk). Hence the minimal values for k and m such
that qn · · · q0(x1 · · ·xm) is nontrivial is k = m = n+ 3. In this case we have

qn · · · q0(x1 · · ·xn+3) 6= 0 in BP 〈n〉2
n+2

(Gn+3)

and cannot be lifted to BP 〈n+ 1〉2n+2

(Gn+3).

3.2. Non-liftable BP 〈n〉-classes for odd primes. In this section, let p be an odd
prime. Let Gk be the k-fold product of Z/p, i.e., Gk = (Z/p)k. The Fp-cohomology
of Gk is given by

H∗((Z/p)k;Fp) ∼= Λ(x1, . . . , xk)⊗ Fp[y1, . . . , yk](9)

with |xi| = 1 and |yi| = 2 (and x2
i = 0) for i = 1, . . . , k. The Bockstein homomor-

phism

β : H∗(Gk;Z/p)→ H∗+1(Gk;Z/p).
sends xi to yi, i.e., β(xi) = yi for i = 1, . . . , k. The Milnor operations Qn in the
mod p-Steenrod algebra can be defined recursively by

Q0 = β,

Qn+1 = P p
n

Qn −QnP p
n
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where P i is the ith reduced pth power operation. The Qn are primitive elements,
i.e., Qn(xy) = Qn(x)y + (−1)|x|·|Qn|xQn(y). Since the degree of Qn is always odd,
this means

(10) Qn(xy) = Qn(x)y + (−1)|x|xQn(y).

Lemma 3.5. The action of the Milnor operations on the generators of H∗((Z/p)k;Fp)
is given by

Qn(xi) = yp
n

i(11)

Qn(yi) = 0.(12)

Proof. For n = 0, we have Q0(xi) = β(xi) = yi, and Q0(yi) = β(β(xi)) = 0. For
n ≥ 1, we proceed by induction. For xi, we get

Qn(xi) = (P p
n−1

Qn−1 −Qn−1P
pn−1

)(xi)

= P p
n−1

Qn−1(xi)−Qn−1P
pn−1

(xi)

= P p
n−1

(yp
n−1

i )−Qn−1(0) = (yp
n−1

i )p

= yp
n

i .

For yi, we get

Qn(yi) = (P p
n−1

Qn−1 −Qn−1P
pn−1

)(yi)

= P p
n−1

Qn−1(yi)−Qn−1P
pn−1

)(yi)

= 0

since Qn−1 acts trivially on yi by the induction hypothesis (and P p
n−1

(yi) = 0 for
n ≥ 2). �

In order to facilitate the bookkeeping in the next lemma, we set

y
1
2
i := xi for i = 1, . . . , k(13)

in H∗((Z/p)k;Fp) = Λ(x1, . . . , xk)⊗ Fp[y1, . . . , yk].

Lemma 3.6. With notation as in (9) and (13) and m ≤ k, we have

QnQn−1 · · ·Q0(x1 · · ·xm) = 0 for m ≤ n

QnQn−1 · · ·Q0(x1 · · ·xm) =
∑

(−1)ρ(j)yj11 y
j2
2 · · · yjmm for m ≥ n+ 1

where the sum is taken over all cyclic permutations j = (j1, . . . , jm) of the set of m
numbers {pn, pn−1, . . . , p, 1, 1

2 , . . . ,
1
2} with m − (n + 1) many 1

2 ’s, and ρ(j) is the
sum over the numbers at, for t ∈ {1, . . . , n}, defined as follows: let i(t) be the index
with ji(t) = pt; then at is the number of indices s ∈ {1, . . . ,m} with s < i(t) and

either js = 1
2 or js > pt.

In particular, we get

QnQn−1 · · ·Q1Q0(x1 · · ·xm) 6= 0 for m ≥ n+ 1.

Proof. For n = 0, we have

Q0(x1 · · ·xm) = y1x2 · · ·xm − x1y2x3 · · ·xm + · · ·+ (−1)mx1x2 · · · ym.

Keeping notation (13) in mind, this proves the assertion for n = 0.
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For n = 1 and m = 1, we have Q1Q0(x1) = Q1(y1) = 0 by (12). For n ≥ 1 and
m ≥ 1, we proceed by induction. If m ≤ n− 1, then Qn−1 · · ·Q1Q0(x1 · · ·xm) = 0
by the induction hypothesis. So assume m ≥ n. By the induction hypothesis, we
have

QnQn−1 · · ·Q0(x1 · · ·xm) = Qn(
∑

(−1)ρ(j)yj11 y
j2
2 · · · yjmm )

where the sum is taken over all bijections j = (j1, . . . , jm) of the set {1, . . . ,m}
with the set of m numbers {pn−1, . . . , p, 1, 1

2 , . . . ,
1
2} (with m− n many 1

2 ’s).

If m = n, then each (j1, . . . , jn) is a permutation of the set {pn−1, . . . , p, 1}, or in
other words, there is no xi left. Then (12) implies that all summands vanish under
Qn. This proves the assertion for m = n.

Now we assume m ≥ n + 1. Let j be a fixed bijection from {1, . . . ,m} to

{pn−1, . . . , p, 1, 1
2 , . . . ,

1
2}. By formula (10), applying Qn to yj11 y

j2
2 · · · yjmm yields

new summands, one for each i ∈ {1, . . . ,m} with ji = 1
2 , of the form

(−1)ayj11 · · · y
ji−1

i−1 y
pn

i y
ji+1

i+1 · · · y
jm
m

where a is given by the number of indices s ∈ {1, . . . ,m} with s < i and js = 1
2 .

Now taking the sum over all cyclic permutations j of {pn−1, . . . , p, 1, 1
2 , . . . ,

1
2}, we

obtain that

Qn · · ·Q0(x1 · · ·xm) =
∑

(−1)ρ(j
′)y

j′1
1 y

j′2
2 · · · y

j′m
m

where the sum is now over all cyclic permutations j′ of {pn, . . . , p, 1, 1
2 , . . . ,

1
2}. �

Recall |Qi| = 2pi − 1 and
∑n
i=0 |Qi| =

∑n
i=0 2pi − 1 = 2w(n) − n − 1 where we

write w(n) := pn + · · ·+ 1. As before, Lemma 2.1 now implies the following result.

Proposition 3.7. Let n be an integer ≥ 0, and let k and m be integers such that
k ≥ m ≥ n+ 2. Let Gk = (Z/p)k and x1, . . . , xm be distinct exterior algebra gener-
ators of H∗((Z/p)k;Fp) as in formula (9). Then the element qn · · · q0(x1 · · ·xm) is

nontrivial in the group BP 〈n〉m+2w(n)−n−1(Gk) and is not contained in the image
of the map

ρn+1
n : BP 〈n+ 1〉m+2w(n)−n−1(Gk)→ BP 〈n〉m+2w(n)−n−1(Gk).

By [12, Corollary 7.10], we know that any element in BP 〈n〉∗(Gk) which is not
in the image of the map BP ∗(Gk)→ BP 〈n〉∗(Gk) is in the image of the map

qn · · · q0 : H∗(Gk;Fp)→ BP 〈n〉∗+2w(n)−n−1(Gk).

The point of Propositions 3.3 and 3.7 is that we specify concrete nontrivial elements
in this image that we can use for our application in the next section.

4. Non-algebraic classes in BP 〈n〉-cohomology

Let X be a smooth projective complex algebraic variety, and let Hi,j
M(X;R)

denote its motivic cohomology with coefficients in a ring R. For every i and j, the
topological realization functor X 7→ X(C) induces a natural homomorphism

Hi,j
M(X;R)→ Hi(X(C);R)(14)

to the singular cohomology of the space X(C) of complex points of X.

For a prime p and integer n ≥ 0, let BP 〈n〉i,jM(X) be the motivic Brown-Peterson
cohomology for p and n constructed in [20], [5, §6.4] and [10, §3]. Again, for every
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i and j, the topological realization functor from the motivic to the classical stable
homotopy category induces a natural homomorphism

BP 〈n〉i,jM(X)→ BP 〈n〉i(X(C))(15)

to the Brown-Peterson cohomology for p and n of the space X(C).

Recall that in degrees (2i, i), the group H2i,i
M (X;Z) is naturally isomorphic to

the Chow group CHi(X) of codimension i cycles on X. Therefore, we will denote
the map (15) in degrees (2i, i) by

cln : BP 〈n〉2i,iM (X)→ BP 〈n〉2i(X(C))

and extend this notation to the map (14) for mod p-cohomology

cl−1 : H2i,i
M (X;Fp)→ H2i(X(C);Fp).

For every n and i, these maps fit into a commutative diagram

BP 〈n〉2i,iM (X)

ρn−1,M

��

cln // BP 〈n〉2i(X(C))

ρn−1

��
H2i,i
M (X;Fp)

cl−1

// H2i(X(C);Fp).

Lemma 4.1. Let n ≥ 0 and X be a smooth projective complex variety. Let bn be
an element in BP 〈n〉∗(X(C)) which is not contained in the image of

ρn+1
n : BP 〈n+ 1〉∗(X(C))→ BP 〈n〉∗(X(C))

and has nontrivial image under ρn−1 in H∗(X(C);Fp). Then bn is not contained in
the image of cln.

Proof. Let yn ∈ H∗(X(C);Fp) be the image of bn under ρn−1. If bn was in the image
of cln, then yn would be in the image of cl−1 as well. But, by the work of Totaro
[19, Theorem 3.1] (see also Levine-Morel [9, Theorem 1.2.19]), the mod p-cycle map
cl−1 factors through the natural map

BP ∗(X(C))⊗BP∗ Z/p→ H∗(X(C);Fp)

induced by ρ−1 : BP ∗(X(C)) → H∗(X(C);Fp). Hence yn would have to be con-
tained in the image of ρ−1. But this is impossible by our assumption that bn is not
contained in the image of ρn+1

n and hence not in the image of

ρn : BP ∗(X(C))→ BP 〈n〉∗(X(C)).

�

In order to find a suitable algebraic variety we are going to apply the construction
of Godeaux-Serre varieties explained in [15, §20] and [2, Proposition 6.6]. It yields,
for any given finite group G and integer k ≥ 1, a smooth projective variety X of
complex dimension k together with a continuous map X(C)→ BG×K(Z, 2) which
is k-connected.

With this construction at hand, we can now extend the argument of Atiyah-
Hirzebruch to all finite levels in the Brown-Peterson tower and prove our main
result.
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Theorem 4.2. For every prime p and every integer n ≥ 0, there is a smooth
projective complex algebraic variety X and an element bn in BP 〈n〉2w(n)+2(X(C))
which is not contained in the image of the natural map

cln : BP 〈n〉2w(n)+2,∗
M (X)→ BP 〈n〉2w(n)+2(X(C)).

Proof. Let Gn+3 = (Z/p)n+3 and k denote 2w(n+1)+1. Let X be the correspond-
ing Godeaux-Serre variety with the k-connected map X(C) → BGn+3 ×K(Z, 2).
Let

ϕ : X(C)→ BGn+3 ×K(Z, 2)→ BGn+3

denote the composition with the projection onto BGn+3. For all i ≤ k, any
nonzero element x ∈ Hi(Gn+3;Fp) is pulled back to a nonzero element ϕ∗(x) ∈
Hi(X(C);Fp).

Let x1, . . . , xn+3 denote the distinct exterior algebra generators of H∗(Gn+3;Fp)
for p odd, or the distinct polynomial generators for p = 2. By Lemmas 3.2 and 3.6,
we know that the elementQn · · ·Q0(x1 · · ·xn+3) is nontrivial inH2w(n)+2(Gn+3;Fp).
Thus, since 2w(n) + 2 ≤ k, the element

yn := Qn · · ·Q0(ϕ∗(x1 · · ·xn+3)) = ϕ∗Qn · · ·Q0(x1 · · ·xn+3) ∈ H2w(n)+2(X(C);Fp)

is nontrivial as well. Now we define

bn := qn · · · q0(ϕ∗(x1 · · ·xn+3)) = ϕ∗qn · · · q0(x1 · · ·xn+3) ∈ BP 〈n〉2w(n)+2(X(C)).

Since its image under the canonical map

BP 〈n〉2w(n)+2(X(C))→ H2w(n)+2(X(C);Fp)

is ±yn, bn is nontrivial as well. Hence, by Lemma 2.1, bn is not contained in the
image of ρn+1

n : BP 〈n+ 1〉∗(X(C)) → BP 〈n〉∗(X(C)). By Lemma 4.1 this implies
that bn is not contained in the image of cln. �

Remark 4.3. The minimal possible (complex) dimension of the variety in Theorem
4.2 is 2w(n + 1) + 1 = 2(pn+1 + · · · + 1) + 1. This is because we need the map
X(C)→ BGn+3×K(Z, 2) to be 2w(n+1)+1-connected for the argument to work.
Hence, for p = 2, the least possible dimension of X is 2n+3 − 1. The fact that the
dimension is rather big is consistent with a result of Soulé-Voisin [16, Theorem 1]
that the order of an element detected by the Atiyah-Hirzebruch-Totaro obstruction
must be small relative to the dimension of the variety.

Remark 4.4. The case n = 0 of Theorem 4.2 is the original example of Atiyah
and Hirzebruch [2, p. 42, Proof of (6.7)]. Let G3 = Z/p × Z/p × Z/p with co-
homology ring H∗(G3;Fp) = Λ(x1, x2, x3) ⊗ Fp[y1, y2, y3]. Atiyah and Hirzebruch
consider the element y := β(x1x2x3) ∈ H4(G3;Fp), where β denotes the Bockstein
homomorphism, and show Q1(y) 6= 0 in H4+2p−1(G3;Fp). Since y is in the kernel
of β, it corresponds to a unique p-torsion element in H∗(G3;Z). The Godeaux-
Serre construction then provides a smooth projective variety X whose cohomology
contains H∗(G3;Z) as a direct factor up to degree dimCX. Then they show that a
class in the image of cl must be a permanent cycle in the Atiyah-Hirzebruch spec-
tral sequence H∗(X(C);Z)⇒ KU∗(X(C)) converging to the complex K-theory of
X(C). The operation Q1 corresponds to a differential in this spectral sequence.
Hence if Q1 acts non-trivially on y, then the lift of y to H∗(X(C);Z) cannot be a
permanent cycle.
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Remark 4.5. The elements constructed in Theorem 4.2 map to torsion classes in
the Z(p)-cohomology of X(C). In particular, their images in H∗(X(C);Z(p)) are
Z(p)-Hodge classes.

Remark 4.6. Let Ω∗(−) denote the algebraic cobordism theory of Levine and
Morel [9]. It is constructed as the universal oriented cohomology theory for smooth
algebraic varieties over fields of characteristic 0. For smooth varieties over C, it
comes equipped with a natural commutative diagram

Ω∗(X)

θ

��

clΩ // MU2∗(X(C))

ϑ

��
CH∗(X)

cl
// H2∗(X(C);Z).

(16)

Since the diagram commutes, a first obstruction for an element α ∈ MU2∗(X(C))
being in the image of clΩ is that ϑ(α) ∈ H2∗(X(C);Z) must be algebraic. As
Claire Voisin kindly pointed out to us, this obstruction is not trivial because of the
examples of Kollár and Soulé-Voisin in [16]. For, as in Kollár’s example, let X be
a very general smooth hypersurface in P4 of degree divisible by s3 for an integer s
coprime to 6. Then the map ϑ is surjective and all integral cohomology classes in
H4(X(C);Z) are Hodge classes. Thus, since there is a class α ∈ H4(X(C);Z) which
is not contained in the image of cl, there is an element in MU4(X(C)) mapping
to α which is not contained in the image of clΩ. Moreover, based on Kollár’s
argument, Soulé and Voisin construct for a smooth projective complex variety X of
dimension 5 torsion elements in H6(X(C);Z) which are in the image of ϑ, but not
algebraic. This shows that both, torsion and non-torsion elements in M2∗(X(C))
can be non-algebraic.

Remark 4.7. In [4], Colliot-Thélène and Szamuely use the examples of [2] to
show that the `-adic integral version of the Tate conjecture for varieties over finite
fields of characteristic 6= ` fails (in [13], one can find a different explanation of the
obstructions). More recently, it was shown by Pirutka-Yagita [11] for the primes
` = 2, 3 or 5, and by Kameko [7] for all primes `, that the integral version of the
Tate conjecture even fails for non-torsion classes. Those examples are based on
the examples by Atiyah-Hirzebruch and approximations of projective varieties by
classifying spaces of affine algebraic groups. In [1], Antieau shows that there is an-
other type of non-torsion examples which come from classifying spaces of quotients
of special linear groups. The argument uses representation theory, while the Qi
vanish on those examples. However, there are differentials of higher degree in the
Atiyah-Hirzebruch spectral sequence that do detect the examples.

Remark 4.8. By [15, §20], Godeaux-Serre varieties can be constructed over any
infinite field. In particular, we could use the techniques of [13] and consider a
smooth projective variety X over an algebraically closed field F̄` of characteristic
` 6= p. There is a p-completed étale version of Brown-Peterson cohomology for p
and n, denoted by B̂P 〈n〉∗ét(X). Moreover, the results of [5] allow to construct a

motivic version BP 〈n〉2∗,∗M (X) in characteristic ` 6= p. The stable p-completed étale
realization functor then induces a natural map

BP 〈n〉2∗,∗M (X)⊗Z Zp → B̂P 〈n〉2∗ét (X).
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Then one can use Milnor operations in étale cohomology and repeat our argument
for Godeaux-Serre varieties defined over F̄`. This yields non-algebraic classes in the
étale Brown-Peterson tower in characteristic ` 6= p.
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