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Abstract. For a profinite group, we construct a model structure on profinite
spaces and profinite spectra with a continuous action. This yields descent

spectral sequences for the homotopy groups of homotopy fixed point space

and for stable homotopy groups of homotopy orbit spaces. Our main example
is the Galois action on profinite étale topological types of varieties over a field.

One motivation is to understand Grothendieck’s section conjecture in terms of
homotopy fixed points.

1. Introduction

Let Ŝ be the category of profinite spaces, i.e simplicial objects in the category
of profinite sets. Examples of profinite spaces arise in algebraic geometry. For a
locally noetherian scheme X, we denote by ÊtX the profinitely completed étale
topological type of X of Friedlander, see [12] and [32]. It is a profinite space that
collects the information of the étale topology on the scheme. Now let k be a field,
k̄ a separable closure of k and Gk its Galois group over k. Let X be a variety over
k and let X̄ = X ⊗k k̄ be the base change of X to k̄. Since Gk acts on X̄ and
since Êt is a functor, there is an induced Gk-action on Êt X̄. This Galois action is
an important property of the étale topological type of X̄. Furthermore, there is a
natural sequence of profinite spaces

(1) Êt X̄ −→ ÊtX −→ Êt k.

As Êt k ' BGk, this inspires to think of ÊtX as the homotopy orbit of Êt X̄ under
its Gk-action. In fact, this would generalize a theorem of Cox’ on real algebraic
varieties in [6] that there is a weak equivalence of pro-spaces EtX ' X(C)×G EG
for G = Gal(C/R).

The main purpose of this paper is to provide a rigid framework for the Galois
action on étale topological types via model categories in which a generalization
of Cox’ result and its applications can be proven. In particular, we are going to
construct homotopy fixed points of étale topological types of varieties over arbitrary
base fields.

So let us describe the general setup and thereby outline the content of the pa-
per. Let G be an arbitrary profinite group and let ŜG be the category of profinite
spaces with G acting continuously in each level and equivariant face and degen-
eracy maps. Various model structures on Ŝ have been constructed, see [27] and

[32]. We construct a left proper fibrantly generated model structure on ŜG such

that the weak equivalences (fibrations) in ŜG are the maps that are weak equiv-

alences (resp. fibrations) in Ŝ and the cofibrant objects are the profinite spaces
with a free G-action. In order to do so, one is tempted to use an adjoint functor
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argument as Goerss did in [13], but the subtle point is that the mapping space func-

tor homŜ(G,−) : Ŝ → ŜG is not the natural right adjoint of the forgetful functor

Ŝ → ŜG since the sets HomŜ(X,Y ) do not have to be profinite for general X and

Y in Ŝ. Therefore, encouraged by the referee of this paper, we give a direct proof
with explicit generating fibrations and trivial fibrations.1

Let EG denote the universal profinite covering space of the classifying space
BG. A convenient point of profinite spaces is that EG and BG are objects of
Ŝ. Hence the homotopy fixed points of a profinite G-space X can be defined as
the simplicial mapping space XhG = homG(EG,RX) of continuous G-equivariant

maps, where RX denotes a functorial fibrant replacement in ŜG. Moreover, there
is a descent spectral sequence for homotopy groups of homotopy fixed points of
connected pointed profinite G-spaces

Es,t2 = Hs(G;πtX)⇒ πt−s(X
hG).

The E2-term of this spectral sequence is continuous cohomology of the profinite
groups πtX, where π1X might be a nonabelian profinite group.

For the homotopy orbit space XhG = X×GEG, we construct a spectral sequence
computing the homology H∗(XhG;M) for any profinite abelian group M . Both for
homotopy fixed points and homotopy orbit spaces, the construction of the spectral
sequence follows naturally from the work of Bousfield-Kan [3].

There is also a stable homotopy category ˆSHG for G-spaces using profinite G-
spectra. The well known machinery yields a homotopy orbit spectral sequence for
stable profinite homotopy groups. This generalizes the notion of pro-f -spectra of
Davis [7].

In [34], we study homotopy fixed points of profinite spectra with a continuous
G-action in more detail. The main application is to provide a natural setting for
the continuous action of the extended Morava stabilizer group Gn on Lubin-Tate
spectra En. Since Gn acts continuously on the profinite homotopy groups πkEn, it
seems natural to study the spectra En as profinite spectra. The construction of a
descent spectral sequence for the homotopy fixed point spectra EhGnn , respectively
EhGn for any closed subgroup of Gn, then follows easily in the category of profinite
spectra without using the results of [9]. These methods provide, in particular, a
new construction for homotopy fixed points under open subgroups of Gn.

In the last section we return to the situation of a Galois group Gk acting on the
variety X̄. We will prove the following generalization of Cox’s theorem mentioned
above.

Theorem 1.1. Let k be a field with absolute Galois group Gk and let X be a
geometrically connected variety over k. Then the canonical map

(lim
L

ÊtXL)×Gk EGk → ÊtX

is a weak equivalence of profinite spaces, where the limit is taken over all finite
Galois extensions L/k in k̄ and XL denotes X ⊗k L.

We would like to prove the theorem directly for Êt X̄ but it is not clear that
Êt X̄ is an object of the category of profinite Gk-spaces defined above, i.e. that the
action of Gk remains level-wise continuous after taking limits over hyerpcoverings.

1The inital model structure and the argument in the proof were closer to the one of [13] using
an intermediate strict model structure followed by a Bousfield localization.
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But the canonical Gk-equivariant map Êt X̄ −→ limL ÊtXL is a weak equivalence
of profinite spaces and the latter space has all the properties we need. In particular,
for a variety over a field, the theorem provides the following intuition with a precise
meaning: The two perspectives of viewing the étale topological type of X as a
profinite space ÊtX over Êt k ' BGk or as a profinite space Êt X̄ together with
its induced Gk-action are essentially equivalent.

By Theorem 1.1, the homotopy orbit spectral sequence above may be written as
a Galois descent spectral sequence for stable profinite étale homotopy groups of X:

E2
p,q = Hp(Gk;πét,s

q (X̄))⇒ πét,s
p+q(X).

Moreover, we will show that the stable étale realization functor can be viewed as a
functor from motivic spectra to ˆSHGk . Finally, we show that a refined version of
étale cobordism of [31] satisfies Galois descent in the sense that for any variety X
over k there is a spectral sequence

Es,t2 = Hs(Gk; M̂U tét(X̄))⇒ M̂Us+tét (X).

An `-adic version of étale (co)bordism has been used in [33] in order to study
the integral cycle map from algebraic cycles to étale homology for schemes over
an algebraically closed base field. The descent spectral sequence above should be
useful for a future application of the techniques of [33] for varieties over finite fields.

But the main motivation for studying homotopy fixed points under the Galois
action is Grothendieck’s section conjecture. In fact, the conjecture can be formu-
lated as an isomorphism on k-rational points X(k) and Gk-homotopy fixed points

of Êt X̄. Namely, as the curves involved in the conjecture are K(π, 1)-varieties, we
get an isomorphism

HomĤ/Êt k(Êt k, ÊtX) ∼= Homout,Gk(Gk, π1X),

where the right hand side denotes outer homomorphisms that are compatible with
the projection to Gk. Moreover, with the homotopy equivalence Êt k ' BGk and
Theorem 1.1 we get by adjunction an isomorphism

(2) HomĤ/Êt k(Êt k, ÊtX) ∼= HomĤGk
(EGk, Êt X̄) ∼= π0(Êt X̄)hGk .

So one could read the section conjecture as the conjecture that the canonical map
from X(k) to the homotopy fixed point set on the right hand side of (2) is bijective.

This point of view might be of interest as analogues of the section conjecture
over the reals, shown by Mochizuki in [26], could be proved by Pal using homotopy
fixed points results [29]. Over R, Cox’ theorem is a crucial point in the proof of the
section conjecture. It is likely, that its generalization, Theorem 1.1 above, is useful
for an extension of the methods over R to fields finitely generated over Q or Qp.

The key new progress of this paper for this direction is that Theorem 1.1 allows
the reinterpretation (2) and that, since Bπ1X̄ and Êt X̄ are naturally profinite
spaces, the machinery described above provides a good notion of homotopy fixed
points of these spaces. This opens a new homotopy theoretical tool kit to analyze
the section conjecture.

Acknowledgements: Apart from the motivation by étale homotopy theory, the
starting point of this project was a hint by Dan Isaksen that the profinite spectra
of [31] should fit well in the picture for Lubin-Tate spectra. I would like to thank
him very much to share this idea with me. I would like to thank Fabien Morel
for a discussion on étale homotopy types. I am grateful to Kirsten Wickelgren,
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Daniel Davis, Johannes Schmidt and Mike Hopkins for helpful comments. More-
over, I would like to express my gratitude to the kind referee of this paper whose
suggestions and comments helped to clarify and improve the content. Finally, I
am grateful to the Institute for Advanced Study in Princeton for its support and
hospitality and the inspiring atmosphere in which the final version of this paper
has been written.

2. Homotopy theory of profinite G-spaces

2.1. Profinite spaces. First we recall some basic notions for profinite spaces and
their homotopy category from [27] and [32]. For a category C with small limits, the
pro-category of C, denoted pro-C, has as objects all cofiltering diagrams X : I → C.
Its sets of morphisms are defined as

Hompro−C(X,Y ) := lim
j∈J

colim
i∈I

HomC(Xi, Yj).

A constant pro-object is indexed by the category with one object and one identity
map. The functor sending an object X of C to the constant pro-object with value
X makes C a full subcategory of pro-C. The right adjoint of this embedding is the
limit functor lim: pro-C → C, which sends a pro-object X to the limit in C of the
diagram corresponding to X.

Let E denote the category of sets and let F be the full subcategory of finite
sets. Let Ê be the category of compact Hausdorff totally disconnected topological
spaces. We may identify F with a full subcategory of Ê in the obvious way. The
limit functor lim: pro-F → Ê is an equivalence of categories.

We denote by Ŝ (resp. S) the category of simplicial profinite sets (resp. simplicial

sets). The objects of Ŝ (resp. S) will be called profinite spaces (resp. spaces). The

forgetful functor Ê → E admits a left adjoint (̂·) : E → Ê . It induces a functor

(̂·) : S → Ŝ, which is called profinite completion. It is left adjoint to the forgetful

functor | · | : Ŝ → S which sends a profinite space to its underlying simplicial set.
For a profinite space X we define the set R(X) of simplicial open equivalence

relations on X. An element R ofR(X) is a simplicial profinite subset of the product
X×X such that, in each degree n, Rn is an equivalence relation on Xn and an open
subset of Xn ×Xn. It is ordered by inclusion. For every element R of R(X), the
quotient X/R is a simplicial finite set and the map X → X/R is a map of profinite

spaces. The canonical map X → limR∈R(X)X/R is an isomorphism in Ŝ, cf. [27],
Lemme 1.

Remark 2.1. The category Ŝ has a natural simplicial structure. For example,
for a finite simplicial set K and a profinite space X, the function complex in Ŝ is
defined as the profinite space

hom(K,X) = homŜ(K,X) ∈ Ŝ

whose set of n-simplices is given by the profinite set of maps

homŜ(K,X)n = HomŜ(K ×∆[n], X).

Moreover, for any profinite space Y , there is a natural bijection

(3) HomŜ(X ×K,Y ) ∼= HomŜ(X,hom(K,Y )).
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Let X be a profinite space. The continuous cohomology H∗(X;π) of X with
coefficients in the topological abelian group π is defined as the cohomology of the
complex C∗(X;π) of continuous cochains of X with values in π, i.e. Cn(X;π)
denotes the set HomÊ(Xn, π) of continuous maps α : Xn → π and the differentials

δn : Cn(X;π)→ Cn+1(X;π) are the morphisms associating to α the map
∑n+1
i=0 α◦

di, where di denotes the ith face map of X, see [38] and [27]. If π is a finite abelian

group and Z a simplicial set, then the cohomologies H∗(Z, π) and H∗(Ẑ, π) are
canonically isomorphic.

If Γ is an arbitrary profinite group, we may still define the first cohomology of X
with coefficients in Γ. Let BΓ be the corresponding classifying space given in degree
n by the product n copies of Γ. Since Γ is a profinite group, we can consdier BΓ
in a natural way as a profinite space. Moreover, the associated universal principal
Γ-bundle EΓ→ BΓ can be viewed as a map in Ŝ. Recall that a simplicial homotopy
between two maps f, g : X → BΓ is a map h : X×∆[1]→ BΓ commutative diagram

(4) X ×∆[0]

1×d1

��

f

$$
X ×∆[1]

h // BΓ.

X ×∆[0]

1×d0

OO
g

::

Since the underlying simplicial set of BΓ is a Kan complex, simplicial homotopy
of maps into BΓ is an equivalence relation. Hence, for any profinite space X, we
can consider the set [X,BΓ] of equivalence classes of maps X → BΓ in Ŝ modulo
simplicial homotopy:

[X,BΓ] := HomŜ(X,BΓ)/ ∼ .

Definition 2.2. Let X be a profinite space and Γ be a profinite group. We define
the first continuous cohomology H1(X; Γ) of X with coefficients in Γ to be the
pointed set

H1(X; Γ) := [X,BΓ]

where the basepoint is given by the constant map onto the basepoint of BΓ.

Remark 2.3. By Remark 2.1, we can rephrase the existence of a simplicial homo-
topy in the following way. Let X be a profinite space and Γ be a profinite group,
and let f, g : X → BΓ be two maps in Ŝ. Since ∆[1] is a finite simplicial set, the
adjunction (3) shows that diagram (4) corresponds bijectively to the diagram

BΓ

X

f

88

g
&&

h // hom(∆[1], BΓ)

OO

��
BΓ

Let us write

ι10 : hom(∆[1], BΓ)→ BΓ×BΓ



6 GEREON QUICK

for the map induced by the two face maps d0, d1 : ∆[0] → ∆[1]. Then we we note
that there is a simplcial homotopy relation between f and g if and only if the map

X
(f,g)−−−→ BΓ×BΓ

factors through

X
h−→ hom(∆[1], BΓ)

ι10−→ BΓ×BΓ.

Now we define homotopy groups of profinite spaces. Let X be a profinite space.
We define π0X to be the coequalizer in Ê of the diagram d0, d1 : X1 ⇒ X0.

The profinite fundamental group of X is defined via covering spaces. There is a
universal profinite covering space (X̃, x) of X at a vertex x ∈ X0. Then π1(X,x)

is defined to be the group of automorphisms of (X̃, x) over (X,x). It has a natural
structure of a profinite group as the limit of the finite automorphism groups of
the finite Galois coverings of (X,x). The collection of the π1(X,x) for all x ∈ X0

defines a profinite fundamental groupoid ΠX. The relation of this π1(X,x) to the
usual fundamental group of a simplicial set is described by the following result (see
[32]).

Proposition 2.4. For a pointed simplicial set X, the canonical map from the
profinite group completion of π1(X) to π1(X̂) is an isomorphism, i.e.

π̂1(X) ∼= π1(X̂)

as profinite groups.

By [32], there is the following classification of coverings in Ŝ.

Proposition 2.5. Let X be a connected pointed profinite space. There is a bijective
correspondence between the set of profinite Galois coverings of X and the set closed
normal subgroups of π1(X).

Now we can relate the first cohomology set with the profinite fundamental group
in the following way.

Lemma 2.6. Let X be a connected profinite space and let x ∈ X0 be a vertex.
Let Γ be a finite group and let Hom(π1(X,x),Γ)Γ be the set of outer continuous
homomorphisms. Then there is a natural isomorphism

φ : H1(X; Γ)
∼=−→ Hom(π1(X,x),Γ)Γ.

where Γ acts on a homomorphism α by (g.α)(λ) = gα(λ)g−1.

Proof. The map φ is defined as follows. Given a map f : X → BΓ we consider
the induced map X ×BΓ EΓ → X. Since EΓ is the universal covering of BΓ, this
is a covering on which Γ acts freely. By Proposition 2.5, there is a closed normal
subgroup H of π := π1(X,x) such that the quotient π/H acts on the fibre Γ of
X ×BΓ EΓ → X. This action defines a homomorphism of profinite groups π → Γ
up to inner automorphisms.
We define an inverse ψ for φ. Let α : π → Γ be a homomorphism of profinite
groups up to inner automorphisms. Again by Proposition 2.5, there is a covering
X(Γ) → X on which Γ acts freely. Now we know that the profinite space EΓ
represents the functor

ŜΓ → E , Y 7→ HomÊΓ(Y0,Γ)
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where ÊΓ denotes the category of profinite sets with a Γ-action and ŜΓ denotes
the category of simplicial objects in ÊΓ. By [27, §1.4 Lemme 2], finite groups are

injective objects in the category ÊΓ. This implies that there is a Γ-equivariant map
of profinite spaces X(Γ)→ EΓ. We define ψ(α) : X → BΓ to be the corresponding
quotient map. One can easily check that φ and ψ are mutually inverse to each
other. �

Corollary 2.7. Let X and Y be connected profinite spaces. A map f : X → Y
induces an isomorphism on fundamental groups if and only if it induces a bijection
[Y,BΓ] ∼= [X,BΓ] for every finite group Γ.

We remind the reader of the following definitions of [27] p. 360. Let Γ be a finite
group and let E be a profinite Γ-space, i.e. a simplicial object in the category of
profinite sets with a Γ-action. We say that E is a principal profinite Γ-space if, for
every n, the profinite Γ-set En is free.
A principal Γ-fibration with base X is a profinite Γ-space E and a morphism
E → X that induces an isomorphism E/Γ ∼= X. We denote by ΦΓ(X) the set
of isomorphism classes of principal Γ-fibrations with base X. The correspondence
X 7→ ΦΓ(X) defines via pullback a contravariant functor Ŝop → E . If f : X → Y is
a map and E → Y is a principal Γ-fibration, we write E(f) → X for the pullback
along f .

The previous lemma implies the following familiar classification of principal fi-
brations.

Proposition 2.8. Let Γ be a finite group and X a connected profinite space. The
map

θ : H1(X; Γ)→ ΦΓ(X),

sending the image of f : X → BΓ in H1(X; Γ) to the pullback of EΓ → BΓ along
f , is a bijection.

A profinite local coefficient system M on X is a functor from ΠX to profinite
abelian groups. The cohomology of X with coefficients inM is then defined as the
cohomology of the complex homΠX(X̃∗,M) of continuous natural transformations.
For any further details, we refer the reader to [32]. Now we are able to define the

weak equivalences in Ŝ.

Definition 2.9. A morphism f : X → Y in Ŝ is called
1) a weak equivalence if the induced map f∗ : π0(X) → π0(Y ) is an isomorphism
of profinite sets, f∗ : π1(X,x)→ π1(Y, f(x)) is an isomorphism of profinite groups
for every x ∈ X0 and f∗ : Hq(Y,M)→ Hq(X, f∗M) is an isomorphism for every
local coefficient system M of finite abelian groups on Y for every q ≥ 0;
2) a cofibration if f is a level-wise monomorphism;
3)a fibration if it has the right lifting property with respect to every cofibration that
is also a weak equivalence.

These classes of morphisms fit into a simplicial fibrantly generated left proper
model structure on Ŝ. For every natural number n ≥ 0 we choose a finite set with
n elements, e.g. the set {0, 1, . . . , n − 1}, as a representative of the isomorphism
class of sets with n elements. We denote the set of these representatives by T .
Moreover, for every isomorphism class of finite groups, we choose a representative
with underlying set {0, 1, . . . , n − 1}. Hence for each n we have chosen as many
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groups as there are relations on the set {0, 1, . . . , n − 1}. This ensures that the
collection of these representatives forms a set which we denote by G. Finally, we
denote by L the collection of representatives of isomorphism class of finite abelian
modules M ∈ G with an action of a finite group Γ ∈ G. By the definition of G, it is
clear that L forms a set as well.

Let Γ be a profinite group and let Ŝ/BΓ denote the category of profinite spaces

equipped with a map to BΓ. Moreover, let ŜΓ be the category of profinite spaces
with a levelwise continuous Γ-action. We will discuss this category in more detail in
the next section. There is a functor ŜΓ → Ŝ/BΓ sending Y to the Borel construction

EΓ ×Γ Y → BΓ. On the other hand, there is the functor Ŝ/BΓ → ŜΓ sending
X → BΓ to the Γ-principal fibration EΓ×BΓ X → X. These two functors form a
pair of adjoint functors, cf. [14], VI Lemma 4.6, i.e. there is a natural bijection

(5) HomŜΓ
(EΓ×BΓ X,Y ) ∼= HomŜ/BΓ(X,EΓ×Γ Y ).

For a profinite Γ-module M , we denote the profinite space EΓ ×Γ K(M,n) by
KΓ(M,n) and similarly EΓ×Γ L(M,n) by LΓ(M,n). We define two sets P and Q

of morphisms in Ŝ as follows:

P consisting of K(S, 0)→ K(S, 0)×K(S, 0),K(S, 0)→ ∗,

EΓ→ BΓ, BΓ→ ∗, hom(∆[1], BΓ)
ι10−→ BΓ×BΓ,

LΓ(M,n)→ KΓ(M,n+ 1),KΓ(M,n)→ BΓ,
for every finite set S ∈ T ,
every finite abelian Γ−module M ∈ L,
every finite group Γ ∈ G, and every n ≥ 0;

Q consisting of EΓ→ ∗, LΓ(M,n)→ BΓ for every Γ ∈ G,
every M ∈ L and every n ≥ 0.

In [32], the following theorem had already been claimed, but the classes P and
Q had been chosen too small. The kind referee of the present paper pointed this
out and also gave a suggestion how to correct the error. We are very grateful for
this hint.

Theorem 2.10. The above defined classes of weak equivalences, cofibrations and
fibrations provide Ŝ with the structure of a fibrantly generated left proper model
category with P the set of generating fibrations and Q the set of generating trivial
fibrations. We denote the homotopy category by Ĥ.

Proof. We show that there is a fibrantly generated model structure by checking
the four conditions of the dual of Kan’s Theorem 11.3.1 in [17]. It is clear that
the weak equivalences satisfy the 2-out-of-3 property and are closed under retracts.
We denote by P -cocell the subcategory of relative P -cocell complexes consisting of
limits of pullbacks of elements of P . We write P -proj for the maps having the left
lifting property with respect to all maps in P and P -fib for the maps having the
right lifting property with respect to all maps in P -proj. And we do so similarly
for Q. Now we check the remaining hypotheses of Kan’s Theorem 11.3.1 in [17].

1. We have to show that the codomains of the maps in P and Q are cosmall
relative to P -cocell and Q-cocell, respectively. This is clear for the terminal object
∗. The proof of Theorem 2.11 of [32] shows that BΓ is cosmall relative to P .
We check this now for the objects KΓ(M,n). The cases of K(S, 0) ×K(S, 0) and
BΓ×BΓ are similar.
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By definition of cosmallness we have to show that the canonical map

ϕ : colim
α

HomŜ(Yα,K
Γ(M,n))→ HomŜ(lim

α
Yα,K

Γ(M,n))

is an isomorphism for some cardinal κ, where Yα is any projective system whose
indexing category is of cardinality κ. By the definition of the spaces KΓ(M,n) and
the adjunction (5), this map is equal to the map

colim
α

⋃
fα:Yα→BΓ

ZnΓ (EΓ×BΓ,fα Yα;M)→
⋃

f :limYα→BΓ

ZnΓ (EΓ×BΓ,f lim
α
Yα;M),

where ZnΓ (EΓ×BΓ,f Y,M) denotes the subgroup of the nth cocycles in the complex
of Γ-equivariant cochains CnΓ (EΓ ×BΓ Y ;M) := HomÊΓ(Γ × Yn,M). The unions
are taken over all maps f : Y → BΓ, where we use the cosmallness of BΓ to deduce
colimα HomŜ(Yα, BΓ) = HomŜ(limα Yα, BΓ), cf. [32], Theorem 2.11. Since ÊΓ is
equivalent to the pro-category of finite Γ-sets and since all objects in a pro-category
are cosmall by [5] Corollary 3.5, we see that the map

colim
α

HomÊΓ(Γ× Yα,n,M)→ HomÊΓ(Γ× lim
α
Yα,n,M)

is an isomorphism. Hence ϕ is an isomorphism.
2. We have to show that every Q-fibration is both a P -fibration and a weak

equivalence. First we observe that every map in Q is a composition of maps in P
and hence a relative P -cocell complex. By [18], Lemma 2.1.10, this implies that
every map in P -proj is an element of Q-proj and hence also Q-fib ⊂ P -fib.
Furthermore, if f is a monomorphism in each dimension, then f is an element of
Q-proj by Lemma 2.8 of [32]. Hence Q-fib is contained in the class of maps that
have the right lifting property with respect to all monomorphisms. By Lemme 3 of
[27] this implies that the maps in Q-fib are simplicial homotopy equivalences and
hence weak equivalences.

3. We have seen that every P -projective map is a Q-projective map. It remains
to show P -proj ⊆W . So let f : X → Y be in P -proj. The left lifting property with
respect toK(S, 0)→ ∗ for any finite set S, shows that the mapH0(f ;S) is surjective
and the left lifting property with respect to all maps K(S, 0)→ K(S, 0)×K(S, 0)
shows that any two liftings Y → K(S, 0) agree. Thus H0(f ;S) is an isomorphism.
We deduce that π0(f) is a bijection.
So from now on we can assume that X and Y are connected. Since f has the left
lifting property with respect to the map BΓ→ ∗, the induced map

HomŜ(Y,BΓ)→ HomŜ(X,BΓ)

is surjective. Now let

(6) X

f

��

// hom(∆[1], BΓ)

ι10
��

Y
(α,β)

// BΓ×BΓ

be a commutative diagram in Ŝ. A map Y → BΓ × BΓ corresponds to two maps
α : Y → BΓ and β : Y → BΓ in Ŝ. The fact that (6) commutes, means that the
induced maps f∗(α) = α◦f : X → BΓ and f∗(β) = β ◦f : X → BΓ are homotopic.
Now the left lifting property of f with respect to the right hand map ι10 implies,
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that there is a lift Y → hom(∆[1], BΓ). Thus α and β must be homotopic as maps
from Y to BΓ. This shows that the induced map

f∗ : [Y,BΓ]→ [X,BΓ]

is injective. Hence we see that f induces a bijection f1 : H1(Y ; Γ) ∼= H1(X; Γ).
Let M be a local coefficient system of finite abelian groups on ΠY , the profinite
fundamental groupoid of Y . Since X and Y are connected, after choosing a vertex
y ∈ Y0 in the image of f and a vertex x ∈ X0 such that f(x) = y, there are
equivalences of groupoids ΠX ' π1(X,x) and ΠY ' π1(Y, y) compatible with the
morphisms induced by f , cf. [14], VI, proof of Lemma 3.9. We set πX := π1(X,x)
and πY := π1(Y, y). Under these identifications, the local system M corresponds
to a finite abelian πY -module M . Since the action of πY is continuous on M , it
factors through a finite quotient of πY which is isomorphic to some Γ ∈ G. So we
may consider M as a Γ-module. Being an element in P -proj, f has the left lifting
property with respect to the maps LΓ(M,n)→ KΓ(M,n+1) and KΓ(M,n)→ BΓ

in Ŝ/BΓ. By adjunction (5), this shows that the maps
(7)

f∗ : ZnΓ (EΓ×BΓ Y ;M)→ ZnΓ (EΓ×BΓ X;M) and
CnΓ (EΓ×BΓ Y ;M)→ CnΓ (EΓ×BΓ X;M)×Zn+1

Γ (EΓ×BΓX;M) Z
n+1
Γ (EΓ×BΓ Y ;M)

are surjective. By the definition of cohomology with local coefficients, this shows
that f also induces an isomorphism Hn(f ;M) for every n ≥ 0 and every finite
abelian coefficient system M over Y . By [32, Proposition 2.11] and Lemma 2.6,
this implies that f is a weak equivalence.

4. The remaining point is to show that W ∩Q-proj ⊆ P -proj. So let f : X → Y
be a map in Q-proj that is also weak equivalence. We deduce on the one hand that
f∗ : CnΓ (Y ;M) → CnΓ (X;M) is surjective for all n ≥ 0 and all finite abelian Γ-
modules M in G. Since f is a weak equivalence, this implies that the induced maps
in (7) are surjective for all such n and M . The adjunction (5) then yields the desired
lifting property of f with respect to all maps of the form LΓ(M,n)→ KΓ(M,n+1)

and KΓ(M,n) → BΓ in Ŝ. The left lifting property with respect to the maps
K(S, 0) → K(S, 0) × K(S, 0) and K(S, 0) → ∗ follows immediately from the fact
that π0(f) is a bijection. Moreover, since f is a weak equivalence, it induces in

particular a bijection f∗ : [Y,BΓ]
∼=−→ [X,BΓ] for every finite group Γ. Remembering

diagram (6), the injectivity of f∗ implies the left lifting property with respect to
the map ι10 for all Γ.
Consider the diagram

(8) X

f

��

// EΓ

��
Y // BΓ.

Since f is a weak equivalence, we can assume that both X and Y are connected.
Under the bijection of Proposition 2.8, the principal Γ-fibration corresponding to
the map X → EΓ → BΓ is trivial. Since f∗ : [Y,BΓ] → [X,BΓ] is an injective
map of pointed sets, the principal fibration corresponding to Y → BΓ must be
trivial too. Using that f has the left lifting property with respect to EΓ → ∗, or,
equivalently, that the finite group Γ is an injective object in Ê , this shows that there
is a lift in diagram (8).
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Finally, that f has the left lifting property with respect to BΓ→ ∗ for every finite
group Γ also follows from the fact that f∗ : [Y,BΓ]→ [X,BΓ] is a bijection.

This shows that we have found a fibrantly generated model structure on Ŝ. Since
the maps in Q-proj include the monomorphisms, every object in Ŝ is cofibrant which
implies that the model structure is left proper. That the cofibrations are exactly
the monomorphisms in Ŝ has been shown in Lemma 2.13 of [32]. �

We consider the category S of simplicial sets with the model structure of [35]
and denote its homotopy category by H. For the proof of the following proposition,
we refer again to [32].

Proposition 2.11. 1. The level-wise completion functor (̂·) : S → Ŝ preserves
weak equivalences and cofibrations.
2. The forgetful functor | · | : Ŝ → S preserves fibrations and weak equivalences
between fibrant objects.

3. The induced completion functor (̂·) : H → Ĥ and the right derived functor

R| · | : Ĥ → H form a pair of adjoint functors.

Definition 2.12. Let X be a pointed profinite space and let RX be a fibrant re-
placement of X in the above model structure on Ŝ. Then we define the nth profinite
homotopy group of X for n ≥ 2 to be the profinite group

πn(X) := π0(Ωn(RX)).

One should note, that to be a fibration in Ŝ is a stronger condition than in S.
The profinite structure of the πnX, would not be obtained by taking homotopy
groups for |X| ∈ S. For example, the fundamental group of the simplicial finite set

S1 as an object in Ŝ is equal to Ẑ.

Remark 2.13. Morel [27] proved that there is a model structure on Ŝ for each
prime number p in which the weak equivalences are maps that induce isomorphisms
on Z/p-cohomology. The fibrant replacement functor Rp yields a rigid version of
Bousfield-Kan Z/p-completion. The homotopy groups for this structure are pro-p-
groups being defined in the same way as above using Rp instead of R.

2.2. Profinite G-spaces. Let G be a fixed profinite group. Let X be a profinite
set on which G acts continuously, i.e. there is a continuous map µ : G ×X → X
satisfying the usual axioms of group operation. In this situation we say that X is
a profinite G-set.

If X is a profinite space and G acts continuously on each Xn such that the
action is compatible with the structure maps, then we call X a profinite G-space.
We denote by ŜG the category of profinite G-spaces with level-wise continuous G-
equivariant morphisms. For an open and hence closed normal subgroup U of G, let
XU be the quotient space under the action by U , i.e. the quotient X/ ∼ with x ∼ y
in X if both are in the same orbit under U . The following lemma is the analogue
of the characterization of discrete spaces with a profinite group action.

Lemma 2.14. Let G be a profinite group and X a profinite space with a G-action.
Then X is a profinite G-space if and only if the canonical map φ : X → limU XU

is an isomorphism, where U runs through the open normal subgroups of G.

Remark 2.15. Let us quickly sketch the construction of colimits in Ŝ and ŜG. So
let {Xi}i∈I be a diagram of profinite spaces. Let X be the colimit of the underlying



12 GEREON QUICK

diagram of spaces, i.e. X := colimi |Xi|, and let ϕi : Xi → X be the canonical maps
in S. We define a set R of equivalence relations on X, which are simplicial subsets
of X ×X, to be the set of simplicial equivalence relations R on X such that
- Xn/Rn is finite in each degree n, i.e. X/R is a simplicial finite set,
- ϕ−1

i (R) is open in each Xi ×Xi for all i, i.e. ϕ−1
i (Rn) is an open subset in each

Xi,n ×Xi,n.

Then R is filtered from below and we define the colimit of the diagram in Ŝ to
be the completion of X with respect to R, i.e. X := limR∈RX/R in Ŝ. It is

equipped with a canonical map X
ι→ X which sends each x ∈ X to the sequence

of its equivalence classes [x]R ∈ X/R. The image of ι is dense in X . There are

canonical maps φi : Xi
ϕi→ X

ι→ X in Ŝ that provide X with the universal property
of a colimit in Ŝ.
If {Xi}i∈I is a diagram of profinite G-spaces, then we modify R to RG by the
additional condition that every R ∈ RG is in addition a G-invariant subspace of
X × X. Then we define the colimit of the diagram to be the completion of the
underlying colimit with respect to RG.

For X and Y in Ŝ, the simplicial mapping space map(X,Y ) is defined in degree
n as the set of continuous maps HomŜ(X×∆[n], Y ). If G is a finite discrete group,
considered as a constant simplicial profinite set, map(G, Y ) has a natural profinite

structure induced by the profinite structure on Y . In order to show that ŜG has the
structure of a model category, we would like to use a right adjoint functor to the
forgetful functor ŜG → Ŝ. But the problem is, that if G is an arbitrary profinite
group, the natural candidate for the right adjoint map(G, Y ) does not have to be
a profinite space. Hence the usual adjoint functor argument using map(G,−) may

not be used to show that there is a model structure on ŜG. Initially, this forced
us to consider an intermediate structure as in [13] and then deduce Theorem 2.17
below via Bousfield localization. In this intermediate structure the cofibrations in
ŜG remained the monomorphisms. But it turns out that, in contrast to our initial
belief, there is no model structure on ŜG for which the cofibrations remain the
monomorphisms and weak equivalences the maps that are weak equivalences in Ŝ.
But the referee suggested to prove Theorem 2.17 directly as we will do now. We
are very grateful for the encouragement of the referee to look for a direct argument.

Remark 2.16. Despite the above discussion about the mapping spaces, the cate-
gory ŜG has a natural simplicial structure. In particular, there are function com-
plexes which are defined as follows. Let K be a finite simplicial set with trivial
G-action, and let X be a profinite space. The function complex in ŜG is defined as
the profinite space

homG(K,X) = homŜG(K,X) ∈ ŜG
whose set of n-simplices is given by the profinite set of maps

homG(K,X)n = HomŜ(K ×∆[n], X)

together with the continuous G-action induced by the action of G on the target
X. In particular, the underlying profinite space of homG(K,X) is just the function
complex hom(K,X), built after forgetting the G-action on X.

We want to show that for an arbitrary fixed profinite group G, the category
ŜG has a fibrantly generated model structure in which the weak equivalences are
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the maps whose underlying maps in Ŝ are weak equivalences. Therefore, we will
define as before generating sets of fibrations and trivial fibrations. We modify the
sets T , G and L defined above by allowing G-actions on their elements as follows.
For every natural number n ≥ 0 we consider the discrete sets {0, 1, . . . , n − 1}
with a continuous G-action. As these sets are finite, each of them has only finitely
many automorphisms. Hence this collection of G-sets forms a set which we denote
by TG. Furthermore, we consider the finite discrete groups with underlying sets
{0, 1, . . . , n − 1} as above with a continuous G-action. Again, as there are only
finitely many relations and G-actions, this collection of finite G-groups forms a set
which we denote by GG. Finally, we denote by LG the collection of finite abelian
groups M ∈ GG with an action of a finite group Γ ∈ GG which is compatible with
the G-actions. Since GG is a set, it follows that LG forms a set as well.

Now let PG and QG be the following two sets of morphisms:

PG consisting of K(S, 0)→ K(S, 0)×K(S, 0),K(S, 0)→ ∗,

EΓ→ BΓ, BΓ→ ∗, homG(∆[1], BΓ)
ι10−→ BΓ×BΓ,

LΓ(M,n)→ KΓ(M,n+ 1),KΓ(M,n)→ BΓ,
for every finite set S ∈ TG,
every abelian M ∈ LG, Γ ∈ GG, and every n ≥ 0;

QG consisting of EΓ→ ∗, LΓ(M,n)→ BΓ for every Γ ∈ GG,
every M ∈ LG and every n ≥ 0.

We call a morphism in ŜG a weak equivalence (respectively fibration) if it is a weak

equivalence (respectively fibration) in Ŝ; and we call it a cofibration if it has the

right lifting property with respect to all trivial fibrations in ŜG.

Theorem 2.17. These classes of maps define the structure of a left proper fibrantly
generated simplicial model category on the category of profinite G-spaces with PG
as a set of generating fibrations and QG as a set of generating trivial fibrations.
We denote its homotopy category by ĤG.

Proof. We will denote by CnΓ,G(EΓ × Y ;M) := HomÊΓ,G(Γn+1 × Yn,M) the G-

Γ-equivariant cochains for Y ∈ ŜG, Γ ∈ GG and a G-Γ-group M ; and similarly,
ZnG(Y ;M) will denote the subgroup of G-equivariant cocycles. The strategy for the
proof consists again in checking the four conditions of the dual of Kan’s Theorem
11.3.1 in [17]. It is clear that the weak equivalences satisfy the 2-out-of-3 property
and are closed under retracts.

1. Again the nontrivial cases to check are that BΓ, KΓ(M,n) and K(S, 0) ×
K(S, 0) are cosmall relative to PG-cocell for Γ ∈ GG, M ∈ LG and S ∈ TG. But
this follows from a similar argument as in the proof of Theorem 2.10 using the fact
that ÊΓ,G is equivalent to the pro-category of finite G-Γ-sets.

2. We have to show that every QG-fibration is both a PG-fibration and a weak
equivalence. We know from the proof of Theorem 2.10 that the maps in QG are
trivial fibrations in Ŝ after forgetting the G-action. Since trivial fibrations are
characterized by a lifting property, this implies that the maps in QG-cocell, which
are limits of pullbacks of maps in QG, are also trivial fibrations. By [18], Theorem
2.1.19, this shows that the QG-fibrations are weak equivalences and PG-fibrations.

3. The same argument as for Theorem 2.10 shows that PG-proj ⊂ QG-proj. It
remains to show that every f : X → Y in PG-proj is a weak equivalence. Let U ⊂ G
be an open normal subgroup of G. For a finite set T ∈ T , a finite group H ∈ G and
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an abelian finite H-group N ∈ L we set S := TG/U , Γ := HG/U and M := NG/U

with G/U -action given by permuting the factors; thus we get S ∈ TG, Γ ∈ GG and
M ∈ LG. The crucial point is that G-equivariant maps from a profinite G-space
Z to S are in one-to-one correspondence to maps in Ŝ from Z/U after forgetting
the G-action to T , and similarly for Γ and M . Hence the argument of the proof of
Theorem 2.10 applied to the special maps in PG built from such S, Γ and M shows
that f/U is a weak equivalence in Ŝ for every open normal U in G. By Lemma 2.14
we know f = limU f/U . This proves that f induces isomorphisms in cohomology
with finite local abelian coefficients.
The left lifting property with respect to BΓ, for Γ = HG/U as above, implies
that the map HomŜ(f/U,BH) is surjective for every finite group H. Since BH
represents continuous 1-cocycles, we obtain that Z1(f/U ;H) is surjective. Since H
is a cosmall object in the category of profinite sets, we know that in the diagram

colimU Z
1(Y/U ;H)

��

∼= // Z1(Y ;H)

Z1(f ;H)

��
colimU Z

1(X/U ;H)
∼= // Z1(X;H)

the horizontal maps are bijective. Since each Z1(f/U ;H) is surjective and since
filtered colimits are exact, this shows that Z1(f ;H) is surjective as well.
The left lifting property with respect to ι10 implies that, for every finite group H
and Γ = HG/U as above, the induced map

HomŜ(Y/U×∆[1], BΓ)→ HomŜ(Y/U,BΓ×BΓ)×HomŜ(X/U,BΓ×BΓ)HomŜ(X/U×∆[1], BΓ)

is surjective. Reinterpreting this map in terms of continuous 1-cocycles and using
the fact that filtered colimits commute with finite limits, we obtain that

HomŜ(Y×∆[1], BH)→ HomŜ(Y,BH×BH)×HomŜ(X,BH×BH)HomŜ(X×∆[1], BH)

is surjective. This implies that the induced map f∗ : [Y,BH]→ [X,BH] is injective.
Overall we see that f∗ is a bijection. A similar argument shows that π0(f) is
a bijection as well. This implies that the f is a weak equivalence of underlying
profinite spaces.

4. The last point is to show that W ∩QG-proj ⊆ PG-proj. So let f : X → Y be
a map in QG-proj that is also weak equivalence. We deduce on the one hand that
f∗ : CnΓ,G(EΓ× Y ;M)→ CnΓ,G(EΓ×X;M) is surjective for all n ≥ 0 and all finite
abelian G-Γ-modules M in GG. This shows that every G-equivariant cocycle in
ZnΓ,G(EΓ×BΓX;M) has a lift to G-equivariant cochains. The fact that f is a weak

equivalence implies that this lift is actually also a cocycle in ZnΓ,G(EΓ×BΓ Y ;M).

Moreover, if we have an element (α, β) in the fibre product

CnΓ,G(EΓ×BΓ X;M)×Zn+1
Γ,G (EΓ×BΓX;M) Z

n+1
Γ,G (EΓ×BΓ Y ;M)

then there is a lift γ0 of α in CnΓ,G(EΓ ×BΓ Y ;M). Using the same special types
of S, Γ and M as in the previous item, we deduce from the proof of Theorem 2.10
that f/U is a trivial cofibration in Ŝ and hence so is f = limU f/U . Thus f is in
P -proj after forgetting the G-action and there is also a possibly non-G-equivariant
lift γ1 of (α, β) in CnΓ (EΓ ×BΓ Y ;M). But again since f is a weak equivalence,

it follows easily that the difference of γ0 and γ1 vanishes in Zn+1
Γ,G (EΓ ×BΓ Y ;M).

Hence γ0 is a G-equivariant lift of (α, β). Applying a similar argument for the lifting
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property with respect to EΓ→ ∗ and the arguments in the proof of Theorem 2.10,
we conclude that f is in PG-proj.
This shows that we have found a fibrantly generated model structure on ŜG. The
left properness follows from the same property for Ŝ. �

Corollary 2.18. A map f : X → Y is a cofibration in ŜG if and only if it is a
level-wise monomorphism and G acts freely on each set Yn − f(Xn). In particular,

an object X in ŜG is cofibrant if and only if G acts freely on each profinite set Xn.

Proof. The previous theorem implies that the cofibrations in ŜG are the maps in
QG-proj. We recall that a map X → L(M,n) in ŜG corresponds to a map Xn →M

in ÊG. So if a map f : X → Y is in QG-proj, then the left lifting property with
respect to the maps L(M,n) → ∗ in QG corresponds to the existence of a lift

Yn → M for any map Xn → M in ÊG. And similarly, maps X → EΓ in ŜG
correspond to maps X0 → Γ in ÊG. By universality of limits, this implies that
f : X → Y is in QG-proj if and only if it has the left lifting property with respect
to maps EΓ → ∗ and L(M,n) → ∗ for all profinite G-groups Γ and all profinite
G-modules M and n ≥ 0. Now let f : X → Y be a cofibration. For any given n ≥ 0,
we choose M to be the free profinite abelian group on Xn with G-action induced by
the action of G on Xn and the obvious injection Xn → M which corresponds to a
map α : X → L(M,n) in ŜG. Hence if there is a lift of α to Y , f must be level-wise
an injection. Moreover, if N denotes a profinite group with a free G-action, we
replace M by M × N and see that the action of G on Yn − f(Xn) must be free,

since f can be extended to a map Yn →M ×N in ÊG. Here we use the fact that a
projective profinite G-set Z is in fact free, since Z/U is a projective and hence free
G/U -set for all open normal subgroups U of G and Z = limU Z/U .
Now let f be a level-wise injection with a free G-action on Yn − f(Xn) for every
n ≥ 0. In order to show that f is a cofibration, we need to show that for an injective
map f : X → Y in ÊG, G acting freely on Y − f(X), and every map α : X → Γ

in ÊG from X to a profinite G-group Γ, there is a lift β : Y → Γ of α. Now, if
f is injective, so is f/G. Since profinite groups are injective objects in Ê by [32],
Lemma 2.7, we know that α/G has a lift β0 : Y/G→ Γ/G for f/G. But since the
action of G on Y − f(X) is free, we can lift β0 to a G-equivariant map β : Y → Γ

such that α = β ◦ f in ÊG. �

We equip the category Ŝ/BG of profinite spaces over BG with the model usual
structure in which a map is a weak equivalence, cofibration or fibration if and only
if it is a weak equivalence, cofibration or fibration in Ŝ. We have frequently used
adjunction (5) and the pair of adjoint functors F : Ŝ/BG→ ŜG, X 7→ EG×BGX,

and U = (−)hG : ŜG → Ŝ/BG, Y 7→ EG ×G Y . Now we can say more about this
adjunction, see [18] for the terminology of Quillen equivalences.

Corollary 2.19. The two functors F and U form a pair of Quillen equivalences
between the category of profinite spaces over BG and the category of profinite G-
spaces.

Proof. We have already seen that F is left adjoint to U . Moreover, we observe
from the previous corollary that F preserves cofibrations and trivial cofibrations.
So (F,U) forms a Quillen pair of adjoint functors. The remaining point is to observe
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that the map EG ×BG (EG ×G Y ) = EG × Y → Y is a weak equivalence, since
EG→ ∗ is a trivial fibration. By [18], Corollary 1.3.16, this implies the result. �

Definition 2.20. Let X be a profinite G-space and M a profinite G-module. We
define the G-equivariant cohomology of X with coefficients in M to be

Hn
G(X;M) := HomĤG(X,K(M,n)).

Remark 2.21. 1. Let p be any prime number. The method to prove Theorem 2.17
also applies to Morel’s Z/p-model structure on Ŝ of [27] and the action of a profinite
group G. More generally, given a set L of primes, one can use the proof of Theorem
2.17 to show that there is a model structure on ŜG in which the weak equivalences
are maps that induce isomorphisms with respect to pro-L-fundamental groups and
continuous cohomology with local coefficient systems in finite L-groups. We just
have to adapt the classes PG and QG by requiring that the groups Γ and M are all
finite L-groups.
2. In the proof of the theorem we have already used the following fact. Let f :
X → Y be a map in ŜG such that the underlying map of f/U : X/U → Y/U is

a weak equivalence in Ŝ for every open normal subgroup U of G. The homotopy
invariance of the limit functor in Ŝ shown in [32], Proposition 2.23, then implies
that f is a weak equivalence as well.

2.3. Homotopy fixed points and homotopy orbits. We define the homotopy
fixed points as usually as the function space of continuous maps coming from EG.

Definition 2.22. Let G be a profinite group, let X be a profinite G-space and let
X 7→ RX be a fixed functorial fibrant replacement in ŜG. We define the profinite
homotopy fixed point space of X to be the space of G-invariant continuous maps
from EG to RX:

XhG := mapŜG(EG,RX).

Proposition 2.23. Let M be a profinite G-module. Then the homotopy groups of
the simplicial set K(M,n)hG are equal to the continuous cohomology of G, i.e. for
0 ≤ k ≤ n we have

πkK(M,n)hG = Hn−k(G;M).

Proof. By definition of the cohomology Hn−k(G;M) via homogeneous continu-
ous cochains, there is an isomorphism π0mapŜG(EG,K(M,n)) = Hn(G;M). The

above adjointness (5) induces an isomorphism π0mapŜ/BG(BG,KG(M,n)) = Hn(G;M).

Now, applying the functor mapŜ/BG(BG,−) to the homotopy fibre square

KG(M,n)

��

// BG

��
BG // KG(M,n+ 1)

shows that mapŜ/BG(BG,KG(M,n)) is homotopy equivalent to the loop space

ΩmapŜ/BG(BG,KG(M,n+1)). Hence πkmapŜ/BG(BG,KG(M,n)) = Hn−k(G;M).

�

One should note that, as indicated in the formulation of the proposition, there is
a little subtlety about homotopy fixed points for profinite spaces. For an arbitrary
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profinite group G and a fibrant profinite space X, XhG = mapŜG(EG,X) is in

general not a profinite space. Nevertheless, XhG is an interesting object for studying
actions of profinite groups.

The situation is different for example in the case of a p-adic analytic profinite
group G. So for a moment we suppose that G is a p-adic analytic group and that
M is a profinite Zp[[G]]-module, being the inverse limit M = limαMα of finite

G-modules Mα. Let X = K(M,n) be a fibrant Eilenberg MacLane space in Ŝ.
By Proposition 2.23, we know that πkK(M,n)hG = Hn−k(G;M). Moreover, since
G is p-adic analytic, it has an open normal subgroup which is a Poincaré pro-p-
group. This implies that Hn(G;Mα) is finite for each α and that Hn(G;M) =
limαH

n(G;Mα). This shows that in this case XhG has itself a natural profinite
structure.

Back to an arbitrary profinite group G. A profinite G-space X ∈ ŜG may be
considered as a functor from G as a groupoid to Ŝ. From this point of view,
mapŜG(∗, X) = XG is the limit of this functor in Ŝ. Moreover, for X ∈ ŜG fibrant,

we can consider mapŜG(EG,X) as the homotopy limit in S.
As we mentioned earlier, in contrast to our initial belief, there is no simpli-

cial model structure on ŜG in which the weak equivalences are as above but the
cofibrations are exactly all monomorphisms. To show this, let us assume there
was such a structure. Then any map ∗ → EG from the point to EG would be
a trivial cofibration. For X fibrant in ŜG, it would induce a weak equivalence
f : map(EG,X) → map(∗, X). But since X is fibrant in ŜG, the limit XG would

still be fibrant in Ŝ. But the homotopy groups ofXG would then be profinite groups.
So if f is a weak equivalence of spaces, the homotopy groups of mapŜG(EG,X)
would have to be profinite as well. But using Proposition 2.23, it is easy to find
a counterexample such that the homotopy groups are not profinite. So Proposi-
tion 2.23 and the following theorem show that mapŜG(EG,X) ∈ S, although not a
profinite space, is the object we are interested in here.

Theorem 2.24. Let G be a profinite group and let X be a pointed profinite G-
space. Assume either that G has finite cohomological dimension or that X has only
finitely many nonzero homotopy groups. Then there is a convergent descent spectral
sequence for the homotopy groups of the homotopy fixed point space starting from
continuous cohomology with profinite coefficients:

Es,t2 = Hs(G;πt(X))⇒ πt−s(X
hG).

Remark 2.25. As in [13] 4.9, one should note that this is a second quadrant
homotopy spectral sequence whose differentials go

dr : Es,tr −→ Es+r,t+r−1
r .

Moreover, Es,tr is not defined for t − s < 0 and Es,sr can only receive differentials.
In [13] 4.9, Goerss calls such a deformed spectral sequence fringed along the line
t = s. Complete convergence of such an object is defined by Bousfield and Kan in
[3] IX §5.3.

Proof. This is a version of the homotopy limit spectral sequence of Bousfield and
Kan for profinite spaces. We consider the category cS of cosimplicial spaces equipped
with the model structure of [3] X, §4. There is the cosimplicial replacement functor
given in codimension n by mapŜG(Gn, X) ∈ S, the simplicial space of continuous
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G-equivariant maps. If X is fibrant in ŜG, its cosimplicial resolution is a fibrant
object in cS. Now define the total space of a cosimplicial space Y to be

TotY := lim
s

TotsY

where TotsY := hom(sks∆[·], Y ) in which sks∆[·] is the s-skeleton of the cosim-
plicial standard simplex and hom denotes the usual function space. Then there
is a spectral sequence of the cosimplicial replacement of X which is the spectral
sequence associated to the tower of fibrations that arises from the total space of the
cosimplicial replacement of X. We have to check that the E2-term is continuous
cohomology of G. By an analogue of [3] X, 7.2, there are natural isomorphisms

Es,t2
∼= πsπt(homG(G∗, X))

for t ≥ s ≥ 0, where the right hand side denotes the sth cohomotopy of the
cosimplicial group πt(mapŜG(G∗, X)). Since mapŜG(Gn, X) is fibrant, there are

natural isomorphisms of cosimplicial groups πtmapŜG(G∗, X) ∼= HomÊG(G∗, πtX)

as remarked in [3] XI, 5.7. This implies that the above cohomotopy are cohomol-
ogy groups of the complex C∗(G;πtX) given in degree s by the set of continuous
maps from Gs → πtX. If π1X is not abelian, this also holds for s = 0, 1, where
Hs(G;π1X) is still a pointed set. Hence we have identified the E2-term with the
continuous cohomology groups of the statement.
It follows from the definition of mapŜG(G∗, X) that the total space of this cosim-

plicial object is equal to mapŜG(EG,X), i.e. the abutment of the spectral sequence

is πt−sX
hG. Finally, the assumptions imply lim1

r E
s,t
r vanishes and the spectral

sequence converges. completely, cf. [3] IX §5.3. �

We recall from [32] that the homology H∗(X) := H∗(X; Ẑ) of a profinite space
X is defined to be the homology of the complex C∗(X) consisting in degree n of

the profinite groups Cn(X) := F̂ab(Xn), the free abelian profinite group on the
profinite set Xn. The differentials d are the alternating sums

∑n
i=0 di of the face

maps di of X. If M is a profinite abelian group, then H∗(X;M) is defined to be the
homology of the complex C∗(X;M) := C∗(X)⊗̂M , where ⊗̂ denotes the completed
tensor product, see e.g. [36] §5.5.

For X ∈ ŜG, the homotopy orbit space XhG := EG ×G X can be viewed as
the homotopy colimit of the G-action on X. Moreover, the homology Hs(X;M)
is itself a profinite G-module for any profinite abelian group M . This gives rise to
the following spectral sequence.

Theorem 2.26. Let X be a profinite G-space and M a profinite abelian group.
There is a first quadrant homology spectral sequence for the homology groups of
XhG starting from the continuous homology Ht(X;M) of G with coefficients in the
profinite G-modules converging to the homology of the homotopy orbit space of X:

E2
s,t = Hs(G;Ht(X;M))⇒ Hs+t(XhG;M).

Proof. This is a profinite version of the homotopy colimit spectral sequence of
Bousfield and Kan [3], XII §5.7. We can assume that X is fibrant in ŜG. By [3],
XII §5.2, in order to calculate the homotopy colimit of a diagram, one can first take
a simplicial resolution of this diagram. In our case this yields a simplicial profinite
space X × G∗, where, for every k, Gk denotes the constant simplicial set of the
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k-fold product of G. The homotopy colimit is then equal to the diagonal of the
bisimplicial resolution of X induced by G, i.e.

XhG
∼= diag(X ×G∗) ∈ Ŝ.

It follows immediately that, by applying homology, the bisimplicial profinite set
yields a bisimplicial abelian group which has a profinite structure in each bilevel
and in which the maps are continuous group homomorphisms. It is a standard
argument to deduce from the bisimplicial abelian group a spectral sequence

E2
s,t = colim

G

sHt(X;M)⇒ Hs+t(hocolim
G

X;M)

where colims
G denotes the sth left derived functor of the functor induced by the G-

action. It remains to remark that, all groups being equipped with a natural profinite
structure, colims

G is the derived functor of colimG in the category of profinite G-
modules; and that colimGB is the orbit group B/G of a profinite G-module B.
Moreover, Hs(G,B) is the sth left derived functor of the functor B 7→ B/G by [36],
Proposition 6.3.4. �

2.4. Profinite G-spectra. A profinite spectrum X consists of a sequence Xn ∈ Ŝ∗
of pointed profinite spaces for n ≥ 0 and maps σn : S1 ∧ Xn → Xn+1 in Ŝ∗.
A morphism f : X → Y of spectra consists of maps fn : Xn → Yn in Ŝ∗ for
n ≥ 0 such that σn(1 ∧ fn) = fn+1σn. We denote by Sp(Ŝ∗) the corresponding
category of profinite spectra. By Theorem 2.36 of [32], there is a stable homotopy

category ˆSH of profinite spectra. In this model structure, a map f : X → Y is a
stable equivalence if it induces a weak equivalence of mapping spaces map(Y,E)→
map(X,E) for all Ω-spectra E; and f is a cofibration if X0 → Y0 and the induced
maps Xn qS1∧Xn−1

S1 ∧ Yn−1 → Yn are monomorphisms for all n.
Now let G be as always a profinite group. We consider the simplicial finite set

S1 as a profinite G-space with trivial action.

Definition 2.27. We call X a profinite G-spectrum if, for n ≥ 0, each Xn is a
pointed profinite G-space and each S1 ∧Xn → Xn+1 is a G-equivariant map. We

denote the category of profinite G-spectra by Sp(Ŝ∗,G).

Theorem 2.28. There is a model structure on profinite G-spectra such that a
map is a stable weak equivalence (resp. fibration) if and only if it is a stable weak

equivalence (resp. fibration) in Sp(Ŝ∗). The fibrations are the maps with the right
lifting property with respect to maps that are weak equivalences and cofibrations.
We denote its homotopy category by ˆSHG.

Proof. Starting with the model structure on ŜG of Theorem 2.17, the stable model
structure is obtained in the same way as for Ŝ from the techniques of [19] and
the localization results of [31], Theorems 6 and 14, for fibrantly generated model
categories. It is also clear from this construction and Theorem 2.17 that a map in
Sp(Ŝ∗,G) is a stable weak equivalence (resp. fibration) if and only if it is a stable

weak equivalence (resp. fibration) in Sp(Ŝ∗). �

Corollary 2.29. If X is a profinite G-spectrum then each stable profinite homotopy
group πkX is a profinite G-module.
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2.5. Homotopy orbit spectra. Our aim is to construct a spectral sequence as
above that starts with the continuous homology of G with coefficients the profinite
G-module πkX and that converges to the stable homotopy groups of the homotopy
orbit spectrum XhG := EG+ ∧G X of the G-action on X.
For this purpose, we consider the simplicial resolution of the diagram induced by
the G-action on X. As in [3] XII, it is defined to be the simplicial profinite spectrum
X ∧ (G∗)+. Here we denote again, for every k, by (Gk)+ the constant simplicial
set of the k-fold product of G as above but with an additional basepoint and in
level n, (X ∧ (Gk)+)n := Xn ∧ (Gk)+ ∈ Ŝ∗. We may consider X ∧ (G∗)+ either as
a bisimplicial profinite set or as a simplicial profinite spectrum. Since the diagonal
functor d from pointed bisimplicial profinite sets to pointed simplicial profinite sets
commutes with smashing with S1, we may apply the diagonal functor level-wise to
get a spectrum d(X ∧ (G∗)+) with d(X ∧ (G∗)+)n = diag(Xn ∧ (G∗)+), cf. [22] 4.3.
The homotopy colimit is then isomorphic to the diagonal spectrum d(X ∧ (G∗)+)
of the simplicial resolution, i.e.

XhG
∼= d(X ∧ (G∗)+) ∈ Sp(Ŝ∗).

For a simplicial spectrum, Jardine shows in [22] §4, how to construct a spectral
sequence that computes the homotopy groups of the diagonal spectrum, Corollary
4.22 of [22]:

(9) E2
s,t = Hs(πt(Y∗))⇒ πs+t(d(Y )).

The whole construction can be applied in the category of simplicial profinite spectra.
For a simplicial profinite spectrum [k] 7→ Yk, the stable homotopy group πt(Yk)
has a natural profinite structure and πt(Y∗) becomes a simplicial profinite abelian
group. The resulting complex has continuous differentials. Its homology groups
also carry an induced natural profinite structure. Hence (9) may be viewed as a
spectral sequence in profinite abelian groups.

We use (9) for two applications. The first one shows that the diagonal functor
from simplicial profinite spectra to profinite spectra and hence the homotopy orbit
functor respects weak equivalences.

Proposition 2.30. Let X → Y be a map between simplicial profinite spectra such
that, for each n ≥ 0, the map Xn → Yn is a stable equivalence in Sp(Ŝ∗). Then the

induced map d(X)→ d(Y ) is a stable equivalence in Sp(Ŝ∗).

The second application of (9) is what we were really looking for. Let X be a
profinite G-spectrum. Then the homology of the simplicial profinite abelian group
πt(X ∧ (G∗)+) is just the continuous group homology Hs(G, πtX) with profinite
coefficients πtX. Hence we get the following result.

Theorem 2.31. Let G be a profinite group and let X be a profinite G-spectrum.
Then there is a convergent spectral sequence

E2
s,t = Hs(G;πt(X))⇒ πs+t(XhG).

A spectral sequence for the homotopy orbit spectrum under an action of a profi-
nite group G had already been studied in different contexts, in particular by Davis.
In [7], Davis considers discrete G-spectra and calls a spectrum Y an f -spectrum
if πqY is a finite group for each integer q. Let G be a countably based profinite
group and Y0 ← Y1 ← Y2 ← . . . a tower of G-f -spectra such that the level-wise
taken homotopy limit Y = holimi Yi is a G-spectrum. Then the homotopy groups
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of Y are profinite groups. For this situation, Theorem 5.3 of [7] provides a spectral
sequence as in Theorem 2.31. We remark that since πqYi is finite, for each Yi there

is some profinite G-spectrum Xi which is fibrant in Sp(Ŝ∗) such that its underly-
ing spectrum, i.e. after forgetting the profinite structure, is weakly equivalent to
Yi. The homotopy limit X is then also weakly equivalent to Y and YhG is weakly
equivalent to XhG. Hence each tower Y of G-f -spectra may be considered as a
profinite G-spectrum and the spectral sequence of Theorem 5.3 of [7] is a special
case of the spectral sequence of Theorem 2.31 above that arises naturally in the
category of profinite G-spectra for an arbitrary profinite group G.

3. Galois actions

Now we return to our motivating examples for profinite spaces and continuous
group actions of the introduction. The starting point for étale homotopy theory is
the work of Artin and Mazur [1]. The goal was to define invariants as in Algebraic
Topology for a scheme X that depend only on the étale topology of X. They associ-
ated to a scheme X a pro-object in the homotopy category H of spaces. Friedlander
rigidified the construction by associating to X a pro-object in the category S of
simplicial sets. The construction is technical and we refer the reader to [12] for any
details, in particular for the category of rigid hypercoverings. As a reminder for
the reader who is familiar with the techniques, the definition is the following: For
a locally noetherian scheme X, the étale topological type of X is the pro-simplicial
set EtX := Re ◦ π : HRR(X) → S sending a rigid hypercovering U· of X to the
simplicial set of connected components of U·. If f : X → Y is a map of locally
noetherian schemes, then the strict map Et f : EtX → EtY is given by the functor
f∗ : HRR(Y )→ HRR(X) and the natural transformation EtX ◦ f∗ → EtY .

In [31] and [32], we studied a profinite version Êt of this functor by composing

Et with the completion from pro-S to the category of simplicial profinite sets Ŝ.
The advantage of ÊtX is that we have taken the limit over all hypercoverings
in a controlled way and obtain an actual simplicial set that still remembers the
continuous invariants of X. Let us summarize the key properties of ÊtX in the
following proposition, which is due to Artin-Mazur [1] and Friedlander [12], but
one might also want to have a look at [32] for the comparison with continuous
cohomology of Dwyer-Friedlander [11] and Jannsen [20].

Proposition 3.1. 1. Let x̄ be a geometric point of X. It also determines a point
in ÊtX. The profinite fundamental group π1(ÊtX, x̄) of ÊtX as an object of Ŝ is
isomorphic to the étale fundamental group πét

1 (X, x̄) of X as a scheme.
2. Let F be pro-object in the category of locally constant étale sheaf of finite abelian
groups on X. It corresponds bijectively to a local coefficient system F of profinite
groups on ÊtX. Moreover, the cohomology of ÊtX with profinite local coefficients
in F equals the continuous étale cohomology of X, i.e. H∗(ÊtX,F ) ∼= H∗cont(X,F ).

Remark 3.2. 1. One should note that the set of connected components of ÊtX is
equal to the profinite completion of the set of connected components of X. As we
are usually in the situation that X has only finitely many or even a single connected
component, this is not a problem.
2. Continuous étale cohomology is a more sophisticated version of `-adic coho-
mology for schemes. Usually, `-adic cohomology Hi(X;Z`(j)) is defined as an in-
verse limit over n of Hi

ét(X;Z/`ν(j)). If the groups Hi
ét(X;Z/`ν(j)) are not finite,
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Hi(X;Z`(j)) might not have all the good properties that one desires. Dwyer-
Friedlander [11] and Jannsen [20] gave a better behaved definition. The one in [11]
works for all locally constant profinite coefficients, the one in [20] yields a derived
functor approach for more general inverse systems of coefficients but requires dif-
ferent conditions. The cohomology of ÊtX gives a very direct construction of con-
tinuous étale cohomology for locally constant profinite coefficients. This explains in
which sense ÊtX remembers continuous invariants of X, cf. [12] §4. The different
definitions of continuous cohomology agree when they are all defined. Moreover, if
the groups Hi(X;Z/`ν(j)) are finite for all n, then `-adic and continuous cohomol-
ogy with Z`(j)-coefficients agree.

Now let k be a field, k̄ a separable closure of k and Gk := Gal(k̄/k). Let X be
a variety over k, i.e. a separated reduced and irreducible scheme of finite type over
k, and let X̄ = X ⊗k k̄ be the base change of X to k̄.

Unfortunately, it is not clear if Êt X̄ is always a profinite Gk-space in the above
sense. The action of Gk on the sets of connected components of rigid hypercovers
might not be continuous in each level. Nevertheless, there is a canonical model for
Êt X̄ in ŜG.

Lemma 3.3. The canonical Gk-equivariant map α : Êt X̄ −→ limL ÊtXL is a
weak equivalence, where the limit is taken over all finite Galois extensions L/k in
k̄.

Proof. Let L/k be a finite Galois extension with Galois group GL. Since fundamen-
tal groups of profinite spaces commute with limits, there is a canonical isomorphism

π1(lim
L

ÊtXL) ∼= lim
L
π1(ÊtXL).

Moreover, by [15] IX, §6, we know that π1(Êt X̄) = πét
1 (X̄) is isomorphic to

limL π1(ÊtXL). This shows that α induces isomorphisms on fundamental groups.
It remains to show that α also induces isomorphisms on cohomology with local co-
efficients of finite abelian groups. This follows from the fact that H∗ét(X̄;F ) is equal
to the colimit colimLH

∗
ét(XL;FL) for any locally constant sheaf F on X̄ whose pull-

back to XL is denoted by FL. From the analogous equality H∗(limL ÊtXL;F ) =

colimLH
∗(ÊtXL;F ) and Proposition 3.1, we deduce that α is a weak equiva-

lence. �

Since the action of Gk on ÊtXL factors through the finite group Gal(L/k), this

action is continuous on the profinite space ÊtXL. As Gk is the limit of all the
Gal(L/k), this shows that the action of Gk on limL ÊtXL is continuous, cf. [2] III

§7, No 1. We will use this profinite Gk-space as a continuous model for Êt X̄ in ŜG
and will denote it by

cÊt X̄ := lim
L

ÊtXL.

Remark 3.4. This problem vanishes if Gk is strongly complete, i.e. if it is isomor-
phic to the profinite completion of its underlying group |Gk|, or in other words, if

every subgroup of finite index is open, see [36]. In this case, the Gk-action on Êt X̄
would be continuous for any variety X. The class of strongly complete profinite
groups contains the class of all finitely generated profinite group by the work of
Nikolov and Segal [28]. For example the absolute Galois group of p-adic local fields
are finitely generated, cf. [21]. The absolute Galois group of a number field is in
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general not strongly complete as subgroups of finite index which are not open be
easily constructed in such groups.

By [12] and [32], we know that Êt k is homotopy equivalent to BGk and Êt k̄

to EGk in Ŝ. As mentioned in the introduction the natural sequence (1) inspires

us to think of ÊtX as the homotopy orbit space of Êt X̄, just as Cox showed for
real algebraic varieties in [6] Theorem 1.1. The following theorem generalizes Cox’s

result to arbitrary fields. The point is that Êt X̄ → ÊtX is homotopy equivalent
to a principal Gk-fibration, see [32], p. 593.2

Theorem 3.5. Let k be a field with absolute Galois group Gk and let X be a
geometrically connected variety over k. Then the canonical map

ϕ : cÊt X̄ ×Gk EGk → ÊtX

is a weak equivalence of profinite spaces.

Proof. By the definition of weak equivalences, we have to show that ϕ induces an
isomorphism on the profinite fundamental groups and on continuous cohomology
with finite abelian coefficients systems. Let us start with the fundamental groups.
We know from the work of Grothendieck [15] IX, Théorème 6.1, that there is a
short exact sequence

1 −→ πét
1 (X̄, x̄) −→ πét

1 (X,x)→ Gk −→ 1

for every geometric point x̄ of X̄ with image x in X. On the other hand, the map
of profinite spaces cÊt X̄ × EGk → cÊt X̄ ×Gk EGk is a principal Gk-fibration by
definition, see [32]. Hence it is also locally trivial, see e.g. [14] V, Lemma 2.5, and
may be considered as a Galois covering with group Gk. By the classification of
coverings of profinite spaces via the fundamental group in [32], Corollary 2.3, we
deduce that there is a similar short exact sequence for profinite spaces such that
π1(ϕ) fits in a commutative diagram

1 // π1(cÊt X̄ × EGk, x̄) //

��

π1(cÊt X̄ ×Gk EGk, x) //

��

Gk // 1

1 // πét
1 (X̄, x̄) // πét

1 (X,x) // Gk // 1

for every basepoint x̄ of X̄. Since EGk is contractible, the left vertical arrow is
an isomorphism and we conclude that ϕ induces an isomorphism on fundamental
groups.
To prove that ϕ also induces an isomorphism on cohomology we apply two Serre
spectral sequences. Let F be a locally constant étale sheaf of finite abelian groups
on X. On the one hand there is the Hochschild-Serre spectral sequence for étale
cohomology starting from continuous cohomology of Gk with coefficients in the
discrete Gk-module Ht

ét(X̄;F ), cf. [24]:

Es,t2 = Hs(Gk;Ht
ét(X̄;F ))⇒ Hs+t

ét (X;F ).

2In [32] and in a previous version of this paper, it was stated that this map is a principal

fibration, which is only true up to homotopy. So one may find here a rigorous treatment of the
problem.
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On the other hand the fibre sequence

cÊt X̄ −→ cÊt X̄ ×Gk EGk −→ BGk

induces a Serre spectral sequence

Es,t2 = Hs(Gk;Ht(cÊt X̄;F ))⇒ Hs+t(cÊt X̄ ×Gk EGk;F )

where F also denotes the associated local coefficient system on Êt X̄ by Proposition
3.1. This spectral sequence may be constructed in the profinite setting just as in
[10], see also [27] §1.5 and [8] §1.5 for pro-p-versions. It remains to observe that
there is a natural isomorphism between these spectral sequences which is compatible
with ϕ using the isomorphism Ht

ét(X̄;F ) ∼= Ht(Êt X̄;F ). Since these groups vanish
for t > 2 dim X̄, the two spectral sequences are strongly convergent which finishes
the proof of the theorem. �

Hence we may consider ÊtX as the homotopy orbit space of ÊtXk̄ under its
natural Galois action. We will use this key theorem for three applications. On
the one hand we deduce Galois descent spectral sequences for étale (co)homology
theories. The last application is a remark on Grothendieck’s section conjecture for
smooth proper curves of genus at least two over number fields. But first we show
that we can lift this equivalence of the two points of view to the level of motivic
spectra [39]. Over a fixed base field k, the stable homotopy category SH(k) of
motivic spectra can be obtained as follows. We start the category ∆opPreShv(Smk)
of simplicial presheaves on Smk, the category of quasi-projective smooth schemes
over k, with the projective model structure, i.e. the weak equivalences (fibrations)
are objectwise weak equivalences (fibrations) of simplicial sets. Then we localize
this model structure with respect to coproducts, Nisnevich hypercovers and maps
of the form X × A1 → X for every X ∈ Smk. This provides a model for motivic
spaces. Then we stabilize this construction by considering P1

k-spectra, i.e. sequences
of motivic spaces En together with maps P1

k ∧En → En+1 for every n ≥ 0, see e.g.
[31] for this particular model. The resulting homotopy category of motivic spectra
over k is denoted by SH(k).

We know that the étale realization functor above can be extended to a functor
from motivic spectra to the homotopy category of profinite spectra over Êt k, cf.
[31], Theorem 31:

Êt : SH(k)→ ˆSH/Êt k.

This extension can be achieved with the model structure on Ŝ and Sp(Ŝ∗) of Theo-
rem 2.10 and Theorem 2.36 of [32], respectively, if char k = 0. If char k = p > 0, we
have to complete away from the characteristic by using the L-model structure on
Ŝ and Sp(Ŝ∗) for any set of primes L with p /∈ L, see Remark 2.21 above. Now we
remark that the adjointness discussed in the beginning of Section 2.3 of taking ho-
motopy orbits and pullbacks via maps to BGk has an analogue for profinite spectra.
This implies that we can reconstruct étale realization as a functor to the category
of profinite Gk-spectra. Hence the following theorem is in this sense equivalent to
Theorem 31 of [31].

Theorem 3.6. Let k be a field of characteristic zero and let Gk be its absolute
Galois group. The étale realization functor above defines a functor

Êt : SH(k)→ ˆSHGk
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to the stable homotopy category of profinite Gk-spectra by sending a motivic spec-
trum E to ÊtEk̄, where Ek̄ is the base change of E to k̄, with its natural Gk-action.

If k has positive characteristic p, the same statement holds when we equip Ŝ and
Sp(Ŝ∗) with the L-model structure for any chosen set L of primes not containing p.

3.1. Galois descent. As an application of the homotopy orbit spectral sequence
we consider a variant of étale homotopy groups. For a pointed locally noetherian

scheme, we define πét,s
∗ X := πs∗(Σ

∞ÊtX) to be the stable étale homotopy groups
of X. The absolute Galois group Gk acts continuously on each profinite group
πét,s
q (X̄). There is the following Galois descent spectral sequence for these groups

by Theorem 2.31.

Theorem 3.7. Let X be a geometrically connected variety over a field k with
absolute Galois group Gk. There is a convergent spectral sequence for the stable
étale homotopy groups of X:

E2
p,q = Hp(Gk;πét,s

q (X̄))⇒ πét,s
p+q(X).

In the same way we get Galois descent spectral sequences for étale topological
cohomology theories, e.g. étale cobordism [31]. Let MU be the simplicial spectrum

representing topological complex cobordism and let M̂U be its profinite completion.
In [31], an étale topological version of cobordism for smooth schemes has been

studied. It is the theory represented by M̂U via Êt , i.e. in degree n we set

M̂Unét(X) := HomŜH(Σ∞ÊtX, M̂U [n])

where M̂U [n] denotes the nth shift of M̂U andX is assumed to be a pointed scheme.
We can reformulate this definition using function spectra and get an isomorphism

(10) M̂Unét(X) ∼= πnmapSp(Ŝ∗)(Σ
∞ÊtX, M̂U).

Let us denote the function spectrum on the right hand side of (10) by

M̂UXét := mapSp(Ŝ∗)(Σ
∞ÊtX,RM̂U)

where R means a fibrant replacement in Sp(Ŝ∗). This description and an analogue of
Proposition 3.5 implies that étale cobordism satisfies Galois descent in the following
sense, generalizing [11], Proposition 7.1. In order to prove this, we start with the
following lemma.

Lemma 3.8. For each finite Galois extension L/k with Galois group GL = Gal(L/k)
and XL = X ⊗k L, there is a natural equivalence of simplicial spectra

M̂UXét
'−→ (M̂UXLét )hGL

where GL acts on M̂UXLét via its induced action on ÊtXL.

Proof. The assertion is implied by the following sequence of equivalences, where we
omit Σ∞:

homSp(Ŝ∗)(ÊtX,RM̂U)
'−→ mapSp(Ŝ∗)(ÊtXL ×GL EGL, RM̂U)
'−→ mapS∗,GL

(EGL,map(ÊtXL, RM̂U))
'−→ (M̂UXét )hGL

where the first equivalence follows from Theorem 3.5, the second follows from ad-
jointness for the simplicial finite set EGL and the third one is the definition of
homotopy fixed point spectra for finite groups acting on simplicial spectra. �
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Theorem 3.9. Let k be a field with absolute Galois group Gk and let X be a
geometrically connected pointed variety over k. There is a spectral sequence

Es,t2 = Hs(Gk; M̂U tét(X̄))⇒ M̂Us+tét (X)

starting from continuous cohomology of Gk with coefficients the discrete Gk-module
M̂U∗ét(X̄). This spectral sequence converges if Gk has finite cohomological dimen-
sion.

Proof. Each finite quotient GL of Gk induces a finite Galois covering XL → X
which is homotopy equivalent to finite Galois covering of the profinite space ÊtX
using the argument in the proofs of Theorem 3.5 and Lemma 3.3. The well-known
homotopy fixed point spectral sequence for finite groups acting on simplicial spectra
together with the Lemma 3.8 yield a spectral sequence

Es,t2 = Hs(GL; M̂U tét(XL))⇒ M̂Us+tét (X)

for every i. Now the weak equivalence Êt X̄ ' limL ÊtXL of Lemma 3.3 implies
M̂U tét(X̄) ∼= colimL M̂U tét(XL) and hence there is an isomorphism

Hs(Gk; M̂U tét(X̄)) ∼= colim
L

Hs(GL; M̂U tét(XL)).

Since spectral sequences commute with colimits, this implies the assertion of the
theorem. �

The homological counter part, called étale bordism, is defined as

M̂U ét
n (X) := HomŜH(Sn,Σ∞ÊtX ∧ M̂U).

In this case, the descent spectral sequence for étale bordism has a more direct
construction as the homotopy orbit spectral sequence of a generalized homology
theory as in Theorem 2.26 above.

Theorem 3.10. Let k be a field with absolute Galois group Gk and let X be a geo-
metrically connected pointed variety over k. There is a convergent spectral sequence
for the étale bordism of X:

E2
s,t = Hs(Gk; M̂U ét

t (X̄))⇒ M̂U ét
s+t(X).

3.2. A remark on Grothendieck’s section conjecture. We conclude with an
application of the developed theory of homotopy fixed points to Galois actions.3

Let us briefly recall the statement of Grothendieck’s section conjecture [16]. It is
part of a much more general picture drawn by Grothendieck in [16] which predicts
that, for some class of varieties over k, the functor of taking fundamental groups
should be in some sense fully faithful. Detailed accounts on the conjecture can be
found e.g. in [25], [23] and [37]. Let k be a field and Gk its absolute Galois group.
Let X be a geometrically connected variety over k. We have already used that the
functoriality of π1 = πét

1 induces a short exact sequence

1 // π1X̄ // π1X // Gk // 1

where we omit the basepoints for this discussion. Another application of the
functoriality of π1 shows that every k-rational point a ∈ X(k) induces a section
sa : Gk → π1X which is well-defined up to conjugacy by π1X̄. The section conjec-
ture of Grothendieck’s in [16] predicts that this map has an inverse.

3I would like to thank Kirsten Wickelgren for interesting discussions about this topic.
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Conjecture 3.11. (Grothendieck) Let k be a number field and let X be a smooth,
projective curve of genus at least two. The map a 7→ sa is a bijection between the
set X(k) of k-rational points of X and the set of π1X̄-conjugacy classes of sections
Gk → π1X.

It is well-known that the map a 7→ sa is injective. The hard part is the surjectiv-
ity. The varieties that the Grothendieck conjecture is about, especially the curves
of Conjecture 3.11, are so called K(π, 1)-varieties. And here is the point where
étale homotopy enters the stage. In terms of étale homotopy theory a variety X
is a K(π, 1)-variety if the profinite universal covering space of ÊtX is contractible.

Or in other words, ÊtX is weakly equivalent in Ŝ to the profinite classifying space
Bπ1X. Just as for spaces, it is also known for profinite spaces that there is a bijec-
tion between the set of homotopy classes of continuous maps of Eilenberg-MacLane
spaces HomĤ(K(G, 1) → K(π, 1)) and the set of outer continuous group homo-
morphisms Homout(G, π). In light of the previous discussion this shows there is a
bijection

(11) HomĤ/Êt k(Êt k, ÊtX) ∼= Homout,Gk(Gk, π1X),

where the right hand side denotes outer homomorphisms that are compatible with
the projection to Gk. So Conjecture 3.11 may be restated in the way that Êt is a
fully faithful functor from k-rational points to homotopy classes of maps from Êt k
to ÊtX.
All this is of course just a reformulation. But the point we want to stress is that the
machinery of Galois actions developed above provides an interesting point of view
for Conjecture 3.11. From the natural adjunction (5) induced by taking homotopy

orbits and the canonical homotopy equivalence Êt k ' BGk we deduce by Theorem
3.5 that there is a further canonical bijection

(12) HomĤ/Êt k(Êt k, ÊtX) ∼= HomĤGk
(EGk, cÊt X̄) ∼= π0(cÊt X̄)hGk

and hence in order to prove the section conjecture one could try to prove that the
induced map

X(k) −→ π0(cÊt X̄)hGk

is a bijection.
The slight shift of the point of view is very interesting, since the section conjecture

over the real numbers R and topological analogues of it could be proved by Pal in
[29] using fixed and homotopy fixed point methods for finite groups, see also [40].
Further studies in this direction have been done by Pal in [30]. The new input of
this paper consists in Theorem 3.5 and in the rigorous framework for homotopy
fixed points for étale homotopy types for varieties over any base field which had
been missing so far.

What one would like to do now is to factor the map

(13) X(k)→ π0(cÊt X̄)hGk

and one would like to factor this map through some fixed point set under the Gk-
action. Then the geometric part of the problem would be to show that X(k) is
isomorphic to this fixed point set. The homotopy theoretical part would be to
show that the fixed point set is isomorphic to the homotopy fixed point set in the
right hand side of (13). This might be possible by transferring comparison results
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for finite groups to the case of the profinite groups Gk acting on the profinite space
cÊt X̄.
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