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Abstract

We prove that the classical integral cycle class map from algebraic cycles to étale cohomology factors
through a quotient of �-adic étale cobordism over an algebraically closed field of positive characteristic.
This shows that there is a strong topological obstruction for cohomology classes to be algebraic and that
examples of Atiyah, Hirzebruch and Totaro also work in positive characteristic.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Atiyah and Hirzebruch [3] showed that an integral cohomology class of a complex variety X

has to satisfy certain conditions in order to be algebraic. If a cohomology class y in H ∗(X;Z)

is algebraic, all differentials dr in the spectral sequence H ∗(X;Z) ⇒ K∗(X) to topological
K-theory vanish on y. These differentials are certain odd degree cohomology operations; for
example d3 is the integral lift of Sq3. Moreover, they showed that these conditions are not vac-
uous by constructing examples using Godeaux–Serre varieties and a cohomology class y with
Sq3y �= 0. Therefore, they showed that the integral version of the Hodge conjecture for complex
varieties fails in general. Recently, Totaro [37] revisited the obstructions of Atiyah and Hirze-
bruch and showed that they are induced by a stronger condition. Totaro proved that the classical
map from cycles on X to integral cohomology factors through some quotient of complex cobor-
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dism as

CH∗X → MU2∗X ⊗MU∗ Z
θ→ H 2∗(X;Z).

Hence for an integral even degree cohomology class to be algebraic, it has to be in the image
of the canonical map θ : MU2∗X ⊗MU∗ Z → H 2∗(X;Z). This shows the following topological
obstruction for the image of the cycle map which is much stronger than the one of [3]. Let
β : H 2n(−;Z) → H 2n+k(−;Z) be a cohomology operation of odd degree k and let τ : MU∗X →
H ∗(X;Z) be the canonical map of oriented cohomology theories which is induced by a map of
spectra t : MU → HZ. The operation β corresponds to a map b : HZ → HZ of spectra in the

stable homotopy category and induces a map q : MU
t→ HZ

b−→ HZ. By universality of MU, this
new map q factors through t via a map b̃ : MU → MU. Since the degree of β is odd, the degrees
of b and b̃ are odd as well. But there are no nontrivial maps MU → MU of odd degree in the
stable homotopy category. Hence if y ∈ H 2n(X;Z) is a class in the image of θ (which is equal to
the image of τ ), β(y) must vanish. This shows that all (also higher order) odd degree cohomology
operations vanish on the image of θ . Moreover, Totaro showed that the factorization of the cycle
map provides a method to construct nontrivial cycles in the Griffiths group of certain varieties.
Voisin discusses this topological obstruction and other constructions of counter-examples for the
integral Hodge conjecture in [38].

Over a finite field, the analogue of the Hodge conjecture is the Tate conjecture. Let k be a finite
field, k̄ its algebraic closure and G := Gal(k̄/k) the absolute Galois group of k. Let � be a prime
different from the characteristic of k. For a projective smooth and geometrically integral variety
X over k, let us consider the integral version of the Tate conjecture and ask if the homomorphism

CHiX ⊗Z Z� → H 2i
ét

(
Xk̄;Z�(i)

)G (1)

is surjective. As for the integral Hodge conjecture, this map (1) is in general not surjective.
For any algebraically closed field k and a projective smooth variety X over k, Colliot-Thélène,
Szamuely and Totaro [7] have shown that, for any prime number � �= chark, all primary odd
degree Steenrod operations vanish on algebraic cohomology classes in H 2i

ét (X;Z/�(i)). Now
any such X over k is already defined over some finitely generated subfield k0 of k, i.e. there is
a variety X0 over k0 such that X = X0 ⊗k0 k. Since every torsion element is fixed by the action
of Gal(k/k0) and since Godeaux–Serre varieties are defined over any field, this shows that the
initial examples of Atiyah and Hirzebruch yield examples over any algebraically closed field for
which the map

CHiX ⊗Z Z� →
⋃

X0/k0

H 2i
ét

(
X;Z�(i)

)Gal(k/k0)

is not surjective, where the union runs over all subfields k0 and models X0 of X.
The main result of this paper is that in fact Totaro’s stronger obstruction has an analogue over

an algebraically closed of arbitrary characteristic. Once the necessary theory is developed, the
proof is similar to the one of Totaro’s theorem in [37]. But there are two main new highly nontriv-
ial ingredients. First, we have to replace the usage of the analytic topology on complex varieties.
Its natural analogue over fields of positive characteristic is the étale topology. By Artin, Mazur [2]
and Friedlander [12], the information of the étale topology can be collected in a functor that as-
sociates to any locally noetherian scheme an étale homotopy type. For a fixed prime number �
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different from the characteristic of the base field, we will use an �-adically completed version of
this functor. Substituting the simplicial spectrum representing complex cobordism by an �-adic
completion M̂U, we get the �-adically completed cobordism M̂U

∗
ét(X) of the étale homotopy

type of X. The key point is then to construct a fundamental étale bordism class [X] ∈ M̂U
ét
2n(X)

for any smooth projective variety X of dimension n. This involves the techniques developed in
[27] and a new Poincaré duality theorem for étale bordism. To use this �-adically completed étale
topological type as in [27] and not the usual pro-simplicial set is a significant progress in applying
étale topological cohomology theories, as it yields simplified constructions and makes it possible
to apply results from A1-homotopy theory, see [27] and the third section below. Furthermore,
the proof of Theorem 1.1 below, will demonstrate and use the full power of the analogy to the
complex topological theory provided by the étale topological techniques of [12] and [27], further
developed in the third section.

Secondly, for a complex variety X, the class of a prime cycle, i.e. an irreducible subvariety
Z ⊂ X, is defined to be the cobordism class of a resolution of Z. Over a field of positive charac-
teristic, resolutions of singularities are not available. Therefore, we replace resolutions by smooth
alterations. An alteration of a variety X over a field k is a proper dominant morphism X′ → X

of varieties over k with dimX′ = dimX. This is a weaker notion than a resolution since finite
extensions of the function field are allowed. The existence of alterations such that X′ is smooth
over the base field is part of the famous theorem of de Jong [10]. But this result alone would
not help us, since it does not provide any control of the degree of the alteration. In his recent
studies on finiteness in étale cohomology and uniformizations [14,16], Gabber also proved that,
for any prime � different from the characteristic of the base field, there exists a smooth alteration
of degree prime to �. Since M̂U

∗
ét(X) is a module over the coefficient ring M̂U

∗ = MU∗ ⊗Z Z�,
the degree becomes invertible in �-adic cobordism. After constructing a fundamental étale cobor-
dism class for any smooth projective variety over k, we get a well-defined map by sending an
irreducible subvariety Z ⊂ X to the image of the fundamental class of an alteration π : Z′ → Z

in M̂U
∗
(X) divided by the degree of π . The use of Gabber’s theorem is exactly what is needed

to get an �-adic integral version. Usually, replacing resolutions by alterations forces to switch to
rational coefficients, because of the occurring nontrivial degrees of the maps. But as we explain
below, the discovered topological obstruction is a torsion phenomenon and would vanish for ra-
tional coefficients. Hence to use Gabber’s and not only de Jong’s theorem is a key new idea for
the proof. But that also means that the final verification of the following theorem depends upon
the publication of Gabber’s result on alterations. A sketch of the idea can already be found in
[14] and [16], but a full proof has yet to be written down.

This yields the following factorization of the cycle map in arbitrary characteristic.

Theorem 1.1. Let k be an algebraically closed field and let X be a smooth projective vari-
ety over k. Let � be a prime different from the characteristic of k. There is a natural map

clMU : ZiX → M̂U
2i

ét (X) ⊗MU∗ Z� from codimension i cycles on X that vanishes on cycles alge-
braically equivalent to zero such that the composition

CH∗X clMU−−−→ M̂U
2∗
ét (X) ⊗M̂U

∗ Z�
θ−→ H 2∗

ét (X;Z�)

is the classical cycle map clH to continuous �-adic cohomology after choosing an isomorphism
Z�

∼= Z�(1). This map clMU is compatible with pushforward maps for projective morphisms and
commutes with intersection products.
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This implies the following collection of results.

Corollary 1.2. Let k be an algebraically closed field and � any prime different from the charac-
teristic of k. We choose an isomorphism Z�

∼= Z�(1).

(a) For a cohomology class of even degree to be algebraic, it has to be in the image of the map

M̂U
2∗
ét (X) ⊗M̂U

∗ Z�
θ−→ H 2∗

ét (X;Z�).

In particular, all odd degree (primary or of higher order) cohomology operations on an
algebraic cohomology class vanish.

(b) There is a finite �-group G, a G-representation V , a smooth complete intersection Y ⊂ P(V )

on which G acts freely and a cohomology class y of �-torsion in H 4
ét(Y/G;Z�) that is not

algebraic.
(c) If chark �= 2, there is a smooth projective variety X over k of dimension 7 such that the map

CH2X/2 → H 4
ét(X;Z/2) is not injective. Moreover, there is a smooth projective variety Y

of dimension 15 and a 2-torsion cycle in CH3Y that is homologically but not algebraically
equivalent to zero.

Note for part (a), that it is possible to construct higher cohomology operations in étale co-
homology using the profinite étale homotopy type of X. The usual methods for spaces can be
transferred to profinite spaces. So far, it was only known that primary cohomology operations
of odd degree vanish on the image of the cycle map in positive characteristic. Hence (a) yields
a much stronger condition for algebraic cohomology classes over fields of positive characteris-
tic.

Furthermore, all of the above examples of varieties in (b) and (c) are Godeaux–Serre vari-
eties, constructed in [35], for suitable finite groups. For (b), the group is just G = (Z/�)3, so
the varieties are defined in the same way as by Atiyah and Hirzebruch in [3] over k instead
of C. The remarkable point in (b) is that the original proof of Atiyah and Hirzebruch in [3] fits
very nicely in the picture of étale homotopy theory. Thus, although Colliot-Thélène, Szamuely
and Totaro had shown (b) by a weaker and different argument, our proof verifies the conjec-
tural remark of Milne [21, Aside 1.4], that the arguments of [3] should carry over to positive
characteristic.

For (c), the hard work has been done by Totaro [37], who studied the kernel of the map
MU∗X ⊗MU∗ Z → H ∗(X,Z). The varieties in (c) are the same as in [37], but defined over
k instead of C. It is important to note that the variety in (c) is not the first example for the
non-injectivity of the map CH2X/n → H 4

ét(X;Z/n) for a smooth projective variety X over an
algebraically closed field. This question has been discussed by Colliot-Thélène in [6]. Examples
have been found by Bloch and Esnault in [4] and by Schoen in [31–33] and [34]. But in (c) we get
new examples of cycles over an algebraically closed field of positive characteristic by methods
that are different from the methods of Bloch, Esnault and Schoen.

As in the complex case, the factorization of the cycle map and the examples of Corollary 1.2
are a torsion phenomenon. The map M̂U

∗
ét(X) → H ∗

ét(X;Z�) is the edge map of the top row

of the Atiyah–Hirzebruch spectral sequence for étale cobordism E2 = H ∗
ét(X; M̂U

∗
) ⇒ M̂U

∗
étX.

All its differentials are torsion. Hence if H ∗
ét(X;Z�) has no torsion, then the E2-term has no

torsion and all differentials vanish. In this case the map M̂U
∗
(X) ⊗ ˆ ∗ Z� → H ∗(X;Z�) is an
ét MU ét
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isomorphism. Moreover, for an arbitrary X, the same argument shows that after tensoring with
Q� the map

M̂U
∗
ét(X) ⊗M̂U

∗ Q� → H ∗
ét(X;Z�) ⊗ Q�

is always an isomorphism.
Finally, Theorem 1.1 is not implied by the work of Levine and Morel [19] on algebraic cobor-

dism. After Totaro had written [37], Levine and Morel proved that Ω∗X ⊗L∗ Z is isomorphic to
CH∗X and that this is the universal oriented cohomology with additive formal group law over
any field of characteristic zero. So in characteristic zero, Theorem 1.1 and now the theorem of
Totaro are weaker than the result in [19]. But over a field of positive characteristic, the univer-
sality of algebraic cobordism is not known. It is unlikely that Gabber’s theorem which we use in
the proof of Theorem 1.1, suffices for an extension of the work of Levine and Morel in positive
characteristic. One would need a more detailed description of the complement of the smooth
locus.

Before the kickoff, let us resume the outline of the paper. In the next section, we recall the
profinite étale homotopy functor [2,12] and étale cobordism, first considered in [27]. Since the
generalized cycle map can be constructed more generally for étale Borel–Moore bordism of not
necessarily smooth schemes, we will discuss this theory as well and prove the existence of a cap
product pairing. In particular, we show Poincare duality for étale bordism for projective smooth
varieties over algebraically closed fields. This will allow us to define a fundamental bordism class
of a smooth projective variety. The construction of the cycle map and the proof of Theorem 1.1
will occupy the fourth section. In the last section we will discuss the examples of Atiyah and
Hirzebruch and check that the examples in [37] of cycles algebraically but not homologically
equivalent to zero work over any algebraically closed field of characteristic different from two.

2. Étale realizations and profinite spectra

2.1. The étale realization functor

The starting point for étale homotopy theory is the work of Artin and Mazur [2]. The goal
was to define invariants as in algebraic topology for a scheme that depend only on the étale
topology. Friedlander rigidified their construction by associating to a scheme X a pro-object
in the category S of simplicial sets. The construction is in all cases technical and we refer
the reader to [12] for details, in particular for the category HRR(X) of rigid hypercoverings.
But let us quickly recall that for a locally noetherian scheme X, the étale topological type is
defined to be the pro-simplicial set EtX := Re ◦ π : HRR(X) → S sending a rigid hypercov-
ering U of X to the simplicial set of connected components of U . If f : X → Y is a map
of locally noetherian schemes, then the strict map Etf : EtX → EtY is given by the functor
f ∗ : HRR(Y ) → HRR(X) of rigid pullbacks and the natural transformation EtX ◦ f ∗ → EtY .
For geometrically unibranched X, the pro-fundamental group of EtX is equal to the profinite
étale fundamental group of X as a scheme. The cohomology of EtX as a pro-space equals the
étale cohomology for locally constant coefficients, see [12].

To get an actual space, one would like to take the inverse limit of the underlying diagram
of EtX. But as remarked in [12], one would not only lose information but also get the wrong
(discrete) invariants. Nevertheless, one can control the loss of information as we explain now.
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In [28], we studied a profinite version Êt of this functor by composing Et with the completion
from pro-S to the category of simplicial profinite sets Ŝ . This functor is the composite of the
completion S → Ŝ and taking the limit of the underlying diagram. We call the objects in Ŝ
profinite spaces. Its morphisms are simplicial maps that are levelwise continuous. There at least
two interesting model structures on Ŝ . The first one has been studied by Morel in [22]. For this
model structure the cofibrations are the levelwise monomorphisms and the weak equivalences
are maps that induce isomorphisms in continuous cohomology with Z/�-coefficients for a fixed
prime �. In [28] a different structure has been considered for which the cofibrations are as before
but the weak equivalences are maps that induce isomorphisms on profinite fundamental groups
and in continuous cohomology for finite local coefficient systems. The model structure of [28] is
particularly useful for general profinite completions as it provides a rigid version of the profinite
completion functor of Artin and Mazur [2]. In particular, for the étale topological type functor,
it provides a suitable control of the limit process if one wants to pass from the pro-object EtX
to an actual simplicial set. For example, the fundamental group of ÊtX as a profinite space
is always equal to the étale fundamental group of X and the continuous cohomology of ÊtX
with profinite local coefficients equals the continuous étale cohomology of X defined by Dwyer,
Friedlander [11] and Jannsen [18].

2.2. The stable profinite homotopy category

The target of the cycle map that we are going to construct is a quotient of an �-adically
completed version of cobordism. Therefore, we need the following stabilization of profinite
spaces.

We denote by Sp(Ŝ∗) the category of sequences Xn ∈ Ŝ∗ of pointed profinite spaces for n � 0
and maps σn : S1 ∧ Xn → Xn+1 in Ŝ∗. We call the objects in Sp(Ŝ∗) profinite spectra. A mor-
phism f : X → Y of profinite spectra consists of maps fn : Xn → Yn in Ŝ∗ for n � 0 such that
σn(1 ∧ fn) = fn+1σn. If X is a pointed profinite space, there is a profinite suspension spectrum
Σ∞X given in degree n by the n-fold suspension of X.

Let � be a fixed prime number. Starting with the Z/�-model structure on Ŝ , whose homotopy
category is denoted by Ĥ, there is a model structure on profinite spectra such that the suspension
S1 ∧ − becomes a Quillen equivalence, see [27, Corollary 16]. In other words, Sp(Ŝ∗) is the
stabilization of Ŝ . We denote the homotopy category of Sp(Ŝ∗) by Ŝ H.

The completion functor ˆ(·) : S → Ŝ , which is defined in each dimension by taking the limit
over all equivalence relations with a finite quotient set, and the forgetful functor | · | : Ŝ → S
induce levelwise corresponding functors on the category of spectra. When we equip the cate-
gory of simplicial spectra Sp(S∗) with the Bousfield–Friedlander model structure [5], we get the
following adjointness, cf. [27].

Proposition 2.1. Completion ˆ(·) : Sp(S∗) → Sp(Ŝ∗) preserves weak equivalences and cofibra-
tions.

The forgetful functor | · | : Sp(Ŝ∗) → Sp(S∗) preserves fibrations and weak equivalences be-
tween fibrant objects.

In particular, ˆ(·) induces a functor on the homotopy categories and the adjoint pair ( ˆ(·), | · |)
is a Quillen pair of adjoint functors.

Let M̂U ∈ Sp(Ŝ∗) be the completion of the simplicial Thom spectrum representing complex
cobordism. For a profinite spectrum X, we denote by M̂U

n
X, and call it the nth profinite cobor-
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dism of X, the group of morphisms of profinite spectra M̂U
n
X := HomŜ H(X, M̂U ∧Sn). If X is

a profinite space, we denote by M̂U
n
X to be the reduced profinite cobordism of the suspension

spectrum Σ∞(X+), where X+ indicates that we add a disjoint basepoint to X.

The coefficient ring M̂U
∗

can be obtained by taking a fibrant replacement M̂U
�

of M̂U in
Sp(Ŝ∗). It depends of course on �, in fact, one gets M̂U

∗ = MU∗ ⊗Z Z�, i.e. it is a free poly-

nomial ring Z�[x1, x2, . . .] with xi of degree −2i. Let M̂U
<0

denote the ideal of elements in
negative degrees. For any pointed profinite space X, M̂U

∗
X is an M̂U

∗
-module. The canoni-

cal map of profinite spectra M̂U → HZ� corresponding to the map of coefficients M̂U
∗ → Z�,

which sends all generators xi to 0, induces a natural map from M̂U
∗
X to the continuous coho-

mology H ∗
cont(X;Z�). It vanishes on the submodule M̂U

<0 · M̂U
∗
X and hence induces a natural

map

M̂U
∗
X ⊗M̂U

∗ Z� → H ∗
cont(X;Z�).

We need the following analogue of Totaro’s generalization [37, Theorem 2.1], of Quillen’s theo-
rem [29].

Theorem 2.2. Let X be a finite simplicial set. Then the groups M̂U
n
X ⊗M̂U

∗ Z� are zero in

negative dimensions and equal to H 0
cont(X;Z�) in dimension 0. Moreover, the map M̂U

∗
X ⊗M̂U

∗
Z� → H ∗

cont(X;Z�) is an isomorphism in dimensions � 2 and injective in dimensions � 4.

Proof. Let M̂U
�

denote a fibrant replacement of M̂U in Sp(Ŝ∗). By Proposition 2.1 and since
X is finite, the forgetful functor | · | : Sp(Ŝ∗) → Sp(S∗) induces an isomorphism between the

continuous M̂U
�
-cohomology of X as a profinite space and its |M̂U

�|-cohomology as a simplicial
set. Since X is finite, Z� is torsion-free and M̂U

∗
is isomorphic to MU∗ ⊗Z Z�, we conclude

M̂U
∗
(X) ∼= MU∗(X)⊗Z Z� for any finite simplicial set X. Similarly, H ∗

cont(X;Z�) is isomorphic
to H ∗(X;Z)⊗Z Z�. It follows that for finite X, the map M̂U

∗
X ⊗M̂U

∗ Z� → H ∗
cont(X,Z�) is just

the image of the map MU∗X ⊗MU∗ Z → H ∗(X,Z) under the tensor product with Z� over Z.
Since Z� is torsion-free, the result follows from Theorem 2.1 of [37]. �
Remark 2.3. Let BP be the Brown–Peterson spectrum at the prime � and let B̂P be its profinite
completion. For a finite simplicial set X, the isomorphism MU∗X ⊗MU∗ Z(�)

∼= BP∗X ⊗BP∗ Z(�)

and the canonical map Z(�) → Z� induce an isomorphism

M̂U
∗
X ⊗M̂U

∗ Z�
∼= B̂P

∗
X ⊗B̂P

∗ Z�.

Thus the whole game could have been played using B̂P instead of M̂U. But we stick to M̂U.

One of the most important properties of Ŝ H is that it is the target category of the extension
of the étale realization functor to motivic spectra. Recall that the étale realization functor has
been extended to motivic spaces by Isaksen in [17]. So, for example, we may talk about the
étale homotopy type of the Thom space of the normal bundle of a regular embedding etc. The
following extension has been proved in [27]; in fact one can obtain a more general result over an
arbitrary base field.
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Theorem 2.4. Let k be an algebraically closed field of characteristic �= �. The étale realiza-
tion functor of simplicial presheaves has a natural extension to the stable homotopy category of
motivic P1-spectra Êt : S H(k) → Ŝ H. The image of the spectrum MGL representing algebraic
cobordism is isomorphic to M̂U in Ŝ H.

3. Étale topological bordism

For the rest of this paper we assume that k is an algebraically closed field. Let X be a scheme
over k. Let � be a prime different from the characteristic of k. We equip Ŝ and Sp(Ŝ∗) with
the Z/�-model structures of the previous section. We will define étale topological bordism and
cobordism groups of X. Let us start with the latter one.

3.1. Étale cobordism

We define étale topological cobordism to be the generalized cohomology theory represented
by M̂U in Ŝ H applied to ÊtX, i.e.

M̂U
n

ét(X) := HomŜ H
(
Σ∞(ÊtX), M̂U ∧ Sn

)
.

If X is not equipped with a specified basepoint, we will denote by M̂U
n

ét(X) the reduced étale
cobordism of ÊtX+.

We denote by Smk the category of quasiprojective smooth schemes of finite type over k. We
recall from [27] that �-adic étale topological cobordism is an oriented cohomology theory on
Smk in the sense of [25, Definition 2.1]. We will outline the proof below for completeness.

The first thing to do, is to equip étale cobordism with an orientation. There is the following
canonical choice. Let MGL be the motivic spectrum representing algebraic cobordism and let
xMGL : P∞ → MGL ∧ P1 be its orientation, see e.g. [25]. We define the orientation xM̂U :=
Êt(xMGL) : ÊtP∞

k → M̂U ∧ S2 of étale cobordism to be the image of the orientation of algebraic
cobordism under Êt. Since the isomorphism Êt MGL ∼= M̂U is constructed using a lifting to
characteristic zero, the appropriate identifications show that this orientation corresponds to the
image under completion of the canonical orientation of MU.

Theorem 3.1. Let k be an algebraically closed field and let � be a prime different from
the characteristic of the base field k. With the above orientation, �-adic étale topologi-
cal cobordism is an oriented cohomology theory on Smk . In particular, for every projec-
tive morphism f : X → Y of relative codimension d in Smk , there are pushforward maps

f∗ : M̂U
2∗
ét (X) → M̂U

2∗+2d

ét (Y ).

Proof. That étale cobordism is a ring cohomology theory follows immediately from the prop-
erties of MU. The A1-invariance follows from the fact that, since we consider the Z/�-model
structure, Êt(X × A1) → ÊtX is a weak equivalence in Ŝ . This would not be true in gen-
eral if we had not completed away from the characteristic of the base field. To check exci-
sion, let e : (X′,U ′) → (X,U) be a morphism of pairs of schemes in Smk such that e is
étale and for Z = X − U , Z′ = X′ − U ′ one has e−1(Z) = Z′ and e : Z′ → Z is an iso-
morphism. By [20, III, Proposition 1.27], we know that the morphism e induces an isomor-
phism in étale cohomology H ∗(Êt(X)/ Êt(U);Z/�) ∼= H ∗(Êt(X′)/Êt(U ′);Z/�). Hence the map
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Êt(X′)/ Êt(U ′) → Êt(X)/Êt(U) is an isomorphism in Ĥ∗. Therefore, it induces the desired iso-
morphism M̂U

∗
(Êt(X)/ Êt(U)) ∼= M̂U

∗
(Êt(X′)/ Êt(U ′)).

It remains to check that étale cobordism is an oriented theory, i.e. that it has Chern classes.
Let E → X be a vector bundle of rank n over X and let O(1) be the canonical quotient line
bundle over its projective bundle P(E). It determines a morphism P(E) → PN

k for some suffi-

ciently large N . Together with the orientation map xM̂U we get an element ξ ∈ M̂U
2
ét(P(E)). This

induces a projective bundle formula for étale cobordism, i.e. M̂U
∗
ét(P(E)) is a free M̂U

∗
ét(X)-

module with basis (1, ξ, ξ2, . . . , ξn−1). For, the projective bundle formula for étale cohomology
implies that the canonical map Êt(X) × Êt(Pn

k ) → Êt(X × Pn
k) is a weak equivalence in Ŝ ; this

implies a projective bundle formula locally and a Mayer–Vietoris argument shows that the for-
mula holds globally. Chern classes for E are then defined in the well-known way. The existence
and uniqueness of pushforward maps follow from [26]. �

The next proposition will allow us to apply the completed version of Quillen’s Theorem 2.2.

Proposition 3.2. Let X be an n-dimensional scheme of finite type over an algebraically closed
field. Let � be a prime different from the characteristic of k. Then ÊtX has the homotopy type of
a finite simplicial set in Ŝ with respect to the Z/�-model structure.

Proof. It suffices to remark that the étale cohomology groups Hi
ét(X;Z/�) are finite for every i

and vanish for i � 2n + 1. �
3.2. Étale Borel–Moore bordism

The cycle map that will be constructed in the next section will in fact be a map from algebraic
cycles to a quotient of étale bordism. We define étale bordism of a pointed scheme X to be the
profinite homology theory represented by M̂U in Ŝ H applied to ÊtX, i.e.

M̂U
ét
n (X) := HomŜ H

(
Sn, M̂U ∧ Σ∞(ÊtX)

)
.

If X is not equipped with a specified basepoint, we will denote by M̂U
ét
n (X) the reduced étale

bordism of ÊtX+.
We need also a more refined version of bordism. The cycle map that will be defined in the

next section takes values in Borel–Moore étale bordism rather than cobordism. We will define it
in the same way as Friedlander defined Borel–Moore étale homology in [12, Proposition 17.2].
If X is a scheme of finite type over k, let X̄ be a compactification of X. Such a compactification
always exists by Nagata’s theorem [24]. Then we denote by

M̂U
BM,ét
∗ (X) := M̂U∗

(
Êt X̄, Êt(X̄ − X)

)
the étale topological Borel–Moore bordism of X.

Lemma 3.3. Étale Borel–Moore bordism does not depend on the choice of a compactification.
A proper map f : X → Y induces a pushforward map

f∗ : M̂U
BM,ét
∗ (X) → M̂U

BM,ét
∗ (Y ).
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Proof. Let j1 : X ↪→ X̄1 and j2 : X ↪→ X̄2 be two compactifications. The argument in
the proof of Proposition 17.2 in [12] shows that we can assume that j1 maps to j2 via a
proper map f̄ : X̄2 → X̄1 restricting to an isomorphism j2(X)

∼−→ j1(X) and a map Y2 :=
X̄2 − j2(X) → X̄1 − j1(X) =: Y1. Moreover, Proposition 17.2 of [12] implies that Êt f̄ in-
duces an isomorphism Êt X̄2/ ÊtY2 ∼= Êt X̄1/ ÊtY1 in Ĥ. Thus Êt f̄ induces an isomorphism in
any homology theory.

Now let f be a proper morphism. We argue as in [12, 17.2]. Let j0 : X ↪→ X̄1 and
j1 : Y ↪→ Ȳ be compactifications, then f induces f̄ : (X̄2, X̄2 −j2(X)) → (Ȳ , Ȳ −j1(Y )), where
j2 : X ↪→ X̄2 is the compactification defined by � : X → X̄× Ȳ . Hence f̄ induces a pushforward
map in étale bordism for these pairs. �

By the work of Cox [8,9] and Friedlander [12], for any closed immersion X ↪→ Y of locally
noetherian schemes, there is an étale tubular neighborhood of X in Y denoted by TY/X . Let ψX

be the functor that sends an étale covering U → Y to the union of those connected components
Uα of U with Uα ×X Y is nonempty. Then TY/X is defined to be the pro-object of simplicial
schemes

TY/X = {
ψY (U·); U· ∈ HRR(Y )

}
.

So TY/X collects those hypercoverings of Y that intersect the hypercoverings of X. We get its
étale topological type EtTY/X by applying the connected component functor to each ψY (U·). It
is a pro-simplicial set and we let ÊtTY/X be the associated profinite space. An important fact is
that ÊtTY/X is weakly equivalent to ÊtX and that there are weak equivalences

(ÊtY, ÊtX) � (
Êt

(
TY/Y ×Y (Y − X)

)
, Êt

(
TY/X ×Y (Y − X)

))
(2)

of pairs of profinite spaces, see [12, §15]. This excision property (2) of tubular neighborhoods
allows us to define a cap product for any étale homology theory as in [12].

Proposition 3.4. Let i : X ↪→ Y be a closed immersion of schemes over k. For each n � p � 0,
there is a natural cap product pairing

M̂U
p

ét(Y,Y − X) ⊗ M̂U
BM,ét
n (Y ) → M̂U

BM,ét
n−p (X).

Proof. The cap product can be defined as in [12, Proposition 17.4], using étale tubular neigh-
borhoods and the usual construction of cap products for generalized relative homology theories
in [1]. Consider the sequences of embeddings

X
i−→ Y

j−→ Ȳ , X
j ′−→ W

i′−→ Ȳ

where j is a compactification of Y , i′ is the closed immersion of W := Ȳ − (Y − X) into Ȳ and
j ′ is the associated open immersion. For convenience, we set V := W − X = Ȳ − Y . The above
excision formula (2) yields the identifications of pairs in Ĥ:
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(ÊtY, ÊtY − X) ∼= (
Êt(TȲ /W ×Ȳ Y ), Êt

(
TȲ/W ×Ȳ (Y − X)

))
,

(ÊtW, ÊtV ) ∼= (
Êt(TȲ /W ×Ȳ Y ), Êt(TȲ /V ×Ȳ Y )

)
,(

Êt Ȳ , Êt(Ȳ − Y)
) ∼= (

Êt(TȲ /W ×Ȳ Y ), Êt
(
TȲ/W ×Ȳ (Y − X)

) ∪ Êt(TȲ /V ×Ȳ Y )
)
.

Moreover, we know (ÊtW, ÊtV ) ∼= (Êt X̄, Êt(X̄ − X)) in Ĥ for a compactification X̄ of X,
see [12, proof of Proposition 17.4]. Finally, we apply the usual cap product construction of
[1, Part III, §9], via the slant product, to

Êt
(
TȲ/W ×Ȳ (Y − X)

)
↪→ Êt(TȲ /W ×Ȳ Y )

and

Êt(TȲ /V ×Ȳ Y ) ↪→ Êt(TȲ /W ×Ȳ Y ). �
3.3. Poincaré duality

Both theories, étale bordism and cobordism, are closely related by the following Poincaré
duality theorem for smooth projective varieties over k, where variety means a reduced and irre-
ducible scheme that is separated and of finite type over k.

Theorem 3.5. Let X be a smooth projective variety over k of dimension n. Then there is a natural
Poincaré duality isomorphism

DX : M̂U
ét
p (X)

∼=−→ M̂U
2n−p

ét (X).

We define the fundamental class [X] ∈ M̂U
ét
2n(X) of X to be the inverse image of 1 ∈ M̂U

0
ét(X)

under the above duality map DX . The inverse DX of DX is given by the cap-product with [X].

Before we prove this theorem, we make the following convention.

Convention 3.6. Let k be our algebraically closed base field and � the chosen prime different
from the characteristic of k. For a positive integer n � 1, let μ�n(k) denote the group of �nth
roots of unities in k. For the rest of this paper, we fix a choice of a compatible system of �nth
roots of unities in k for all n � 1 and use the induced isomorphism to make the identification
Z�

∼= Z�(1) = limn μ�n(k).

Proof. We use the classical construction for this duality map in topology and define the map
DX via the slant product for generalized homology theories, see [1]. The orientation map
Êt P∞ → M̂U induces an orientation for every vector bundle in Smk . In particular, for the normal
bundle N of the embedding of the diagonal �(X) ↪→ X × X, which is isomorphic to the tangent
bundle of X, we get an induced map ω : Êt Th(N) → Σ2nM̂U in Ŝ H. By homotopy purity, we
know X × X/X × X − �(X) is A1-equivalent to Th(N), see [15, §3]. This map induces a map
in Ŝ H

Êt(X × X) → Êt
(
X × X/X × X − �(X)

) → Σ2nM̂U.
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By abuse of notation, we will also denote this composed map by ω. Now given an element

g ∈ M̂U
ét
p (X), represented by a map g : Sp → M̂U ∧ ÊtX, the slant product ω/g ∈ M̂U

2d−p

ét (X)

is defined as the following composite of maps in Ŝ H, where we omit to denote the twists,

Sp ∧ ÊtX
g∧1−−→ M̂U ∧ ÊtX ∧ ÊtX 1∧ω−−→ M̂U ∧ Σ2nM̂U

μ−→ Σ2nM̂U

where μ : M̂U ∧ M̂U → M̂U is the multiplication map of the ring spectrum M̂U. We define the
map DX by sending g to DX(g) := ω/g.

In order to prove that DX is an isomorphism, we apply the following diagram of Atiyah–
Hirzebruch spectral sequences

H 2n−s
ét (X; M̂Ut )

DX

M̂U
2n−s−t

ét (X)

DX

H ét
s (X; M̂Ut ) M̂U

ét
s+t (X)

where H ét
s (X; M̂Ut ) denotes continuous étale homology as defined in [28] and H 2n−s

ét (X; M̂Ut )

denotes continuous cohomology of ÊtX as defined in [28]. As we remarked above, H ∗
ét(X;Z�)

coincides with Dwyer’s and Friedlander’s [11] and Jannsen’s [18] continuous cohomology of X.
Since X is smooth, these groups are equal to the usual �-adic cohomology limν H ∗

ét(X;Z/�ν).

Since MUt is a free abelian group for every t , the groups H 2n−s
ét (X; M̂Ut ) are isomorphic to

limν H ∗
ét(X;Z/�ν) ⊗ MUt . The construction of DX and the fact that the map M̂U → HZ� is a

map of oriented spectra show that the same construction of DX in homology yields a natural
map between the two spectral sequences. Since k is algebraically closed, the E2-terms vanish
except for 0 � s � 2n and the spectral sequences converge. Finally, the Poincaré duality of [12,
Theorem 17.6], shows that the E2-terms of the spectral sequences are isomorphic. This proves
that DX on bordism is an isomorphism. That the inverse DX is given by the cap product with
[X] now follows just as in [1, Part III, Proposition 10.16]. �
Proposition 3.7. Let i : X ↪→ Y be a closed embedding of smooth schemes of codimension d . Let

ωX/Y ∈ M̂U
2d

ét (Y,Y − X) be the element corresponding to the Thom class of the normal bundle

N under the purity isomorphism M̂U
2d

ét (Y,Y −X) ∼= M̂U
2d

ét (N,N −X), cf. [23, Theorem 3.2.23].
We call ωX/Y the orientation class of the embedding. Then the cap product with ωX/Y defines a
natural pullback map

i∗ : M̂U
BM,ét
j (Y ) → M̂U

BM,ét
j−2d (X)

on étale Borel–Moore bordism. If X and Y are smooth projective varieties, this pullback coin-
cides with the induced pullback from étale cobordism by Poincaré duality.

Proof. The only assertion in this proposition is the one for the case that i is a closed embedding
of smooth projective varieties. For X and Y projective, the pairs used to define a cap product
pairing are given by the étale homotopy types of the inclusions
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TY/X ×Y (Y − X) ↪→ TY/X ×Y Y

and

TY/∅ ×Y Y ↪→ TY/X ×Y Y.

The cap product pairing is translated by DY and DX respectively into the corresponding cup
product pairing. That this cup product pairing, induced by multiplication with the class ωX/Y ,
coincides with the pullback map for cobordism now follows from the Thom isomorphism theo-
rem for an oriented cohomology theory. �
4. The cycle class map

The goal of this section is to prove the following analogue of Theorem 3.1 of [37] for a base
field of arbitrary characteristic. By Poincaré duality, this proves Theorem 1.1 of the introduction
for a smooth projective variety X.

Theorem 4.1. Let k be an algebraically closed field and let X be a quasiprojective scheme of
finite type over k. Let � be a prime different from p. There is a natural map clMU : ZiX →
M̂U

BM,ét
2i (X) ⊗M̂U∗ Z� from the group of algebraic cycles of dimension i on X that vanishes on

cycles algebraically equivalent to zero such that the composition

Z
alg
i X

clMU−−−→ M̂U
BM,ét
2i (X) ⊗M̂U∗ Z�

θ−→ H
BM,ét
2i (X;Z�)

is the cycle class map clH to étale homology of [12, Proposition 17.4], where Z
alg
i X denotes

the group of cycles modulo algebraic equivalence. This map clMU is natural with respect to
projective morphisms.

We remind the reader that in the above statement and in the following prove we stick to Con-
vention 3.6 to use the fixed isomorphism to identify Z� = Z�(1). Before we prove the theorem,
let us start with some comments. If k = C is the field of complex numbers, the cycle map of
[37, Theorem 3.1], sends a closed irreducible subscheme Z ⊂ X of dimension i to the class
[Z̃ → X] ∈ MUBM

2i X ⊗MU∗ Z, where Z̃ → Z denotes a resolution of singularities. This is also
the unique map induced by the universality of Chow groups among oriented cohomology the-
ories whose formal group law is additive, see Remark 1.2.21 and the proof of Theorem 4.5.1
in [19].

In both papers [37] and [19], maps for integral coefficients are constructed using resolution of
singularities for fields of characteristic zero, a technique that is so far not available over a base
of positive characteristic. The best known replacement is the work of de Jong [10] on alterations
and its improvement by Gabber. An alteration of a noetherian integral scheme X over a field k is
a dominant proper morphism π : X′ → X from an integral scheme X′ to X with dimX′ = dimX.
The map π is finite and flat over a nonempty open subset of X. In [10] de Jong proved that for any
variety X and any proper closed subset Z ⊂ X, there is a regular alteration π : X′ → X such that
π−1(Z) is the support of a strict normal crossings divisor in some regular projective variety X̄′.
Moreover, if k is a perfect field, then X̄′ and hence also X′ are smooth over k and p is generically
étale. This is weaker than a resolution of singularities of X, since alterations allow k(X′) to be
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a finite extension of the function field k(X) whereas a resolution of singularities would require
k(X′) = k(X).

In order to construct a well-defined cycle map as in the theorem an arbitrary smooth alteration
would not suffice, since we would not be able to show that two different alterations of X define

the same element in the quotient M̂U
ét
∗ (X) ⊗M̂U∗ Z�. The problem is that there used to be no

control on the degree of the alteration. But recently, Gabber improved de Jong’s result further by
showing that there is an alteration with some control on the degree of the extension k(X′)/k(X).
To be more precise, Gabber proved the following result, cf. [14]; see also [16] for a more detailed
account.

Theorem 4.2 (Gabber). Let X be a separated scheme of finite type over a perfect field k, Z ⊂ X

a nowhere dense closed subset, � a prime �= char(k). Then there exists an alteration π : X′ → X

of degree prime to � with X′ smooth and quasiprojective over k and π−1(Z) the support of a
strict normal crossings divisor.

We will now prove Theorem 4.1 using Gabber’s result. Let X and k be as in Theorem 4.1 and
let Z ⊂ X be an irreducible subvariety of X of dimension i. Since X is quasiprojective, it has
a projective compactification X̄. The closure Z̄ of Z in X̄ is a projective compactification of Z.
Now let Z̄0 ⊂ Z̄ be the singular locus of Z̄. We apply Theorem 4.2 to the pair Z̄0 ⊂ Z̄. We get
an alteration π : Z′ → Z̄ of degree d prime to � with Z′ smooth and, since π is quasiprojective
and proper, Z′ is also projective over k

Z′

π

Z Z̄

X X̄.

Hence Z′ has a fundamental class in M̂U
ét
2i (Z

′) ⊗M̂U∗ Z� by Theorem 3.5. Since (d, �) = 1, d is
invertible in Z�. We send the cycle Z ⊂ X to the pushforward of the fundamental class of Z′
under the projective map Z′ → X̄ divided by the degree:

clMU(Z) := 1

d

[
Z′ π−→ Z̄ ⊂ X̄

] ∈ M̂U
BM,ét
2i (X) ⊗MU∗ Z�.

Here we use the notation of [19] and write [Y → X] for the class f∗([Y ]) in M̂U
BM,ét
2n (X), for a

projective morphism f : Y → X of schemes over k and Y a smooth and projective variety over
k of dimension n with fundamental class [Y ].

We have to show that this definition is independent of the choice of Z′. We have already shown
that Borel–Moore bordism is independent of the choice of compactification. It remains to show
the independence of the choice of alteration. Let π1 : Z′

1 → Z̄ and π2 : Z′
2 → Z̄ be two smooth �-

primary alterations of Z of degree d1 and d2 respectively. The point is that the difference between

the two classes corresponding to π1 and π2 lies in the subgroup M̂U
ét

(X), hence it vanishes
∗>0
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in the quotient M̂U
BM,ét
2i (X) ⊗M̂U∗ Z�. Let us check this. There is a third �-primary alteration Z′

3
that dominates both Z′

1 and Z′
2. For this, it suffices to construct a smooth �-primary alteration Z′

3
of the fibre product Z′

1 ×Z̄ Z′
2:

Z′
3 Z′

1 ×Z̄ Z′
2 Z′

1

Z′
2 Z̄.

(3)

Since π1 and π2 are generically étale, their properties and degrees are preserved under their
mutual base change, i.e. the map Z1 ×Z Z2 → Z1 is proper dominant and generically étale of
degree d2, the map Z1 ×Z̄ Z2 → Z2 is also proper, dominant and generically étale of degree d1.
Hence π3 : Z′

3 → Z̄ is a smooth alteration of Z̄. Moreover, since all alterations were chosen
of degree prime to �, we conclude that the degree d3 of π3 is prime to � and π3 is a smooth
�-primary alteration refining π1 and π2.

Let e1 and e2 be the degrees of the maps Z′
3 → Z′

1 and Z′
3 → Z′

2. They satisfy the equality
d3 = d1e1 = d2e2. Now the class of a map f : Y → X of smooth varieties of the same dimension
n is equal to the class of the identity X → X multiplied by the degree of f in H ét

2n(X;Z�).

The isomorphism M̂U
ét
2n(X) ⊗M̂U∗ Z�

∼= H ét
2n(X;Z�) of Theorems 2.2 and 3.5 shows that this

relation also holds in the quotient of étale bordism. Hence we get the two equalities

[
Z′

3 → Z′
1

] = e1
[
Z′

1 → Z′
1

]
in M̂U

ét
2i

(
Z′

1

) ⊗M̂U
∗ Z�

and

[
Z′

3 → Z′
2

] = e2
[
Z′

2 → Z′
2

]
in M̂U

ét
2i

(
Z′

2

) ⊗M̂U
∗ Z�

and as a consequence also

1

d1

[
Z′

1 → X̄
] = 1

d3

[
Z′

3 → X̄
] = 1

d 2

[
Z′

2 → X̄
]

in M̂U
BM,ét
2i (X) ⊗M̂U∗ Z�. Hence π1 and π2 define the same element, called the class of Z in

M̂U
BM,ét
2i (X) ⊗MU∗ Z�. Finally, we extend this map to arbitrary cycles by linearity.

We have to check that this cycle map clMU induces the cycle map

clH : ZiX → H
BM,ét
2i (X;Z�)

to étale Borel–Moore homology, see e.g. [12, Proposition 17.4] for a definition. The map clH
sends the class of an irreducible subvariety Z ⊂ X of dimension i to the image of the fundamen-
tal class of Z under the pushforward H

BM,ét
2i (Z;Z�) → H

BM,ét
2i (X;Z�). Since the morphism θ

from bordism to homology is a transformation of oriented homology theories, it sends the fun-
damental classes to fundamental classes and is compatible with pushforwards. Hence to prove
the statement, it suffices to observe as before that, if f : Z′ → Z is a finite morphism of degree
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d of schemes of the same dimension i over k, the pushforward f∗ sends the class [Z′] to d[Z] in
H

BM,ét
2i (Z;Z�). This implies clH = θ ◦ clMU on the level of cycles.

Lemma 4.3. The map clMU commutes with pushforwards along projective morphisms.

Proof. We argue basically as in [37]. The only point to check is that inserting degrees does not
change the argument. Let f : X → Y be a projective morphism. For a closed subvariety Z ⊂ X

of dimension i, f (Z) is a closed subvariety of Y and the pushforward on ZiX is defined by

f∗(Z) =
{

deg(f : Z → f (Z))f (Z) if dimf (Z) = dimZ,

0 if dimf (Z) < dimZ.

Let d denote the degree of the map f : Z → f (Z). If dimf (Z) = dimZ, let π2 : Z′
2 → f (Z) be

an �-primary smooth alteration of degree d2 of f (Z̄) and let π1 : Z′
1 → Z̄ an �-primary alteration

over π2 of degree d1 constructed as in (3) such that we get a commutative diagram

Z′
1 Z̄ X̄

f̄

Z′
2 f (Z̄) Ȳ .

Let e be the degree of Z′
1 → Z′

2. The diagram shows d1d = d2e. From the isomorphism

M̂U
BM,ét
2i (Z′

2) ⊗M̂U∗ Z�
∼= H

BM,ét
2i (Z′

2;Z�) and the relations in H
BM,ét
2i (Z′

2;Z�) we get

[
Z′

1 → Z′
2

] = e
[
Z′

2 → Z′
2

]
in M̂U

BM,ét
2i

(
Z′

2

) ⊗M̂U∗ Z�.

The image under the pushforward

f∗ : M̂U
BM,ét
2i (X) ⊗M̂U∗ Z� → M̂U

BM,ét
2i (Y ) ⊗M̂U∗ Z�

of the class clMU(Z) is by definition the class of the map Z′
1 → Ȳ . Now since the above dia-

gram commutes, this map factors through Z′
2. Hence the above equalities imply the following

identifications in M̂U
BM,ét
2i (Y ) ⊗M̂U∗ Z�

f∗
(
clMU(Z)

) = 1

d1

[
Z′

1 → X̄
f̄−→ Ȳ

] = e
1

d1

[
Z′

2 → f (Z̄) → Ȳ
] = d clMU

(
f (Z)

)
.

This proves the lemma for the case dimf (Z) = dimZ.
If dimf (Z) < dimZ, then the argument is similar using the fact that the class of a projec-

tive map f : X → Y of smooth schemes with dimX > dimY is 0 in M̂U
BM,ét
2i (Y ) ⊗M̂U∗ Z� by

Quillen’s Theorem 2.2. �
Lemma 4.4. The map clMU is well-defined modulo algebraic equivalence of cycles.
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Proof. The proof is exactly the same as in [37]. We include it for completeness. Over an al-
gebraically closed field, algebraic equivalence can be defined by connecting points via smooth
projective curves. So let C be a smooth projective curve C over k and let j : W ⊂ X × C be a
subvariety of dimension i + 1 such that the projection f : W → C is a dominant morphism. Let
p : X × C → X and p1 : W → X be the projections on the first factor. We have to show that for
any two points a, b ∈ C

clMU
(
W(a)

) = clMU
(
W(b)

) ∈ M̂U
BM,ét
2i (X) ⊗M̂U∗ Z�

where, for t ∈ C, W(t) denotes the image under p of f ∗(t), the cycle associated to f −1(t) ⊂
X × {P }, as a closed subscheme of X. Since clMU commutes with pushforwards, it suffices to
show

clMU
(
f ∗(a)

) = clMU
(
f ∗(b)

) ∈ M̂U
BM,ét
2i (W) ⊗M̂U∗ Z�. (4)

Let π : W ′ → W̄ be an �-primary alteration of the projective compactification W̄ of W . It in-
duces alterations f −1(a)′ and f −1(b)′ of degrees da and db respectively, such that f −1(0)′ and
f −1(b)′ determine algebraically equivalent cycles of dimension i in W ′. Since the pushforwards
under π∗ of the cycles f ∗(a)′ and f ∗(b)′ are just the cycles f ∗(a) and f ∗(b), it suffices to check
equality (4) for f ∗(a)′ and f ∗(b)′. But since algebraically equivalent cycles are also homolog-
ically equivalent, the images of f −1(a)′ and f −1(b)′ are equal in H 2

ét(W
′;Z�) and thus also

in M̂U
BM,ét
2i (W ′) ⊗M̂U∗ Z� by Theorems 2.2 and 3.5 for the smooth projective variety W ′. This

prove the lemma and finishes the proof of Theorem 4.1. �
If X is a smooth projective variety of dimension n, then cycles modulo rational and algebraic

equivalence, graded by Z∗X := Zn−∗X, form a ring. The same holds for the quotient of étale

cobordism M̂U
∗
ét(X) ⊗M̂U

∗ Z�
∼= M̂U

ét
2n−∗(X) ⊗M̂U∗ Z�. The cycle map respects these products.

Theorem 4.5. The cycle map clMU is compatible with pullbacks along regular embeddings of
smooth quasiprojective schemes, i.e. for any codimension d regular embedding X → Y of smooth
projective schemes, the following diagram of pullback maps commutes

CHiY CHi−dX

M̂U
ét
2i (Y ) ⊗M̂U∗ Z� M̂U

ét
2(i−d)(X) ⊗M̂U∗ Z�.

Corollary 4.6. Let X be a smooth projective variety over k. Then the map clMU commutes with
products.

Proof. Recall the construction of the intersection product modulo rational equivalence by Fulton
and MacPherson in [13]. Let α and β be two cycles on X. There is an external product cycle α×β

on X × X and the product αβ ∈ CH∗(X) is defined as the pullback of α × β along the diagonal
CH∗(X × X) → CH∗(X). Similarly, there is an external product map MU∗X ⊗MU∗ MU∗X →
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MU∗(X×X). The product in étale cobordism is defined by composing this map with the pullback
along the diagonal. Since the diagonal is a regular embedding, the statement follows from the
theorem above using the canonical isomorphism Êt(X × X) ∼= ÊtX × ÊtX in Ĥ. �

The rest of this section will be occupied with the proof of Theorem 4.5. The argument is again
the same as in [37]. But since Totaro proves the statement in a slightly more general context
using a Baum–Fulton–MacPherson pullback for possibly singular complex schemes, we include
the proof in order to show that the main argument applies in our setting as well, where not all
topological constructions are available.

The main example of a regular embedding is the inclusion of the zero-section of a vector
bundle into the total space of the vector bundle X ↪→ E. The pullback CHiE → CHiX is defined
to be the inverse of the natural isomorphism CHiX → CHiE sending a subvariety Z ⊂ X to
E|Z ⊂ E. For an arbitrary regular embedding X → Y , the pullback map can be reduced to this
example via the deformation to the normal cone. Namely, the pullback CHiY → CHiX sends
by definition a subvariety V ⊂ Y to the pullback CHiNX/Y → CHiX we have just defined along
the zero-section inclusion X ↪→ NX/Y of the normal cone CX∩V V of V ∩ X in V .

To prove Theorem 4.5 let us start with the fundamental example of the zero-section embedding
X ↪→ E of a vector bundle E over a smooth quasiprojective scheme X. Since E is embedded
in its associated projective bundle, it is also quasiprojective. As in [37], we remark that since

both pullback maps CHiE → CHi−dX and M̂U
BM,ét
2i (E) ⊗M̂U∗ Z� → M̂U

BM,ét
2(i−d)(X) ⊗M̂U∗ Z�

are isomorphisms, it suffices to prove that the inverse maps commute

CHi−dX CHiE

M̂U
BM,ét
2(i−d)(X) ⊗M̂U∗ Z� M̂U

BM,ét
2i (E) ⊗M̂U∗ Z�.

(5)

The map on the top row sends a subvariety Z ⊂ X to the subvariety E|Z ⊂ E. If
π : Z′ → Z is an �-primary alteration for Z, then π∗E|Z′ → E|Z is an �-primary alteration
too. It is now obvious from the definition of clMU that diagram (5) commutes.

For a general embedding, we have seen that the cycle of a subvariety V ⊂ Y in CHiV

is sent to the pullback of CV ∩XV ⊂ NX/Y in CHi−dX. The inclusion of X in NX/Y

has just been checked. Hence to prove the theorem, it remains to show that the pull-

back of clMU(V ) ∈ M̂U
ét
2i (Y ) ⊗M̂U

∗ Z� to X is equal to the pullback of clMU(CV ∩XV ) ∈
M̂U

ét
2i (NX/Y ) ⊗M̂U

∗ Z� to X.
This follows from the deformation to the normal cone of regular embeddings, see [13, Chap-

ter 5]. For a closed subscheme X ⊂ Y , there is a scheme MXY together with a closed embedding
of X × P1 in MXY and a flat morphism ρ : MXY → P1 such that

X × P1 MXY

P1
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commutes. Moreover, for t ∈ P1 − {∞} = A1, we have ρ−1(t) ∼= Y and the embedding
X ⊂ ρ−1(t) is the given embedding X ⊂ Y , and over ∞ ∈ P1, the embedding X ⊂ ρ−1(∞)

is the zero-section embedding of X into the normal cone CXY of X in Y . Since X is smooth
over k, ρ is a smooth morphism and MXY is smooth. It is also quasiprojective over k since it is
an open subscheme of the blowup of Y × P1 along X × 0.

If V is a subvariety of Y of dimension i, we construct in the same way a scheme MX∩V V

which is a subvariety of MXY . We want to show that clMU(V ) ∈ M̂U
BM,ét
2i (Y ) ⊗M̂U∗ Z�

is the pullback of clMU(MX∩V V ) ∈ M̂U
BM,ét
2(i+1)(MXY) ⊗M̂U∗ Z� along the regular embedding

Y ↪→ MXY and that clMU(CX∩V V ) is also the pullback of clMU(MX∩V V ) along the regular
embedding NX/Y ↪→ MXY . The commutative diagram

Y MXY NX/Y

X X × P1 X

then implies that the pullback of clMU(V ) and of clMU(CX∩V V ) to X are both the pullback of
the same element clMU(MX∩V V ) along the map X → X × P1 → MXY .

Hence it suffices to prove the following lemma.

Lemma 4.7. Let W be an n-dimensional quasiprojective smooth variety over k, T a smooth
curve, f : W → T a non-constant flat morphism, t ∈ T . Let Z be a closed subvariety of W of
dimension i and let g = f|Z : Z → T be the restriction of f to Z. Then the pullback of the class

of Z in M̂U
BM,ét
2i (W) ⊗M̂U∗ Z� equals the class of the cycle associated to the scheme g−1(t) in

M̂U
BM,ét
2i−2 (f −1(t)) ⊗M̂U∗ Z�.

Proof. Since f is flat and the embedding of {t} ↪→ T is regular, the inclusion of the subscheme
et : f −1(t) ⊂ W is a codimension-one regular embedding of smooth schemes. By Proposi-

tion 3.7, the pullback e∗
t : M̂U

BM,ét
∗ (W) → M̂U

BM,ét
∗−2 (f −1(t)) is defined by cap product with

the orientation class ωf −1(t),W ∈ M̂U
2
ét(W,W − f −1(t)) induced by the Thom class of the nor-

mal bundle and homotopy purity. By naturality of Thom classes, we have ωf −1(t),W = f ∗ωt,T ,

where ωt,T ∈ M̂U
2
ét(T ,T − t) is the orientation class of the embedding {t} ↪→ T . Hence we have

to show

f ∗ωt,T ∩ clMU(Z) = clMU
(
g−1(t)

)
in M̂U

BM,ét
2i−2

(
f −1(t)

) ⊗M̂U∗ Z�.

Since the class of g−1(t) is defined as the pushforward of the associated fundamental class along
g−1(t) ↪→ f −1(t), it suffices to prove the formula

g∗ωt,T ∩ clMU(Z) = clMU
(
g−1(t)

)
in M̂U

BM,ét
2i−2

(
g−1(t)

) ⊗M̂U∗ Z�.

So let π : Z′ → Z be a smooth alteration of Z of degree d prime to �. By [13, p. 34], we have
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the identity of cycles on the scheme g−1(t)

π∗
(
(gπ)−1)(t) = g−1(t).

Using the projection formula and the definition of clMU(Z), we obtain the following identifica-

tion in M̂U
BM,ét
2i−2 (g−1(t)) ⊗M̂U∗ Z�

1

d
π∗

(
(gπ)∗ωt,T ∩ [

Z′]) = 1

d
π∗

(
π∗g∗ω{t},T ∩ [

Z′])
= g∗ω{t},T ∩ 1

d
π∗

[
Z′]

= g∗ω{t},T ∩ clMU(Z).

Hence it suffices to show

(gπ)∗ωt,T ∩ [
Z′] = [

(gπ)−1(t)
]

in M̂U
BM,ét
2i−2

(
(gπ)−1(t)

) ⊗M̂U∗ Z�.

So replacing g by gπ , we may assume Z is projective and smooth of dimension i over k.

For such a Z, we know that M̂U
BM,ét
2i−2 (g−1(t)) ⊗M̂U∗ Z� is isomorphic to the Borel–Moore

homology H
BM,ét
2i−2 (g−1(t),Z�) by Theorems 2.2 and 3.5. Hence it suffices to prove the above

formula in étale homology H
BM,ét
2i−2 (g−1(t),Z�) which has been done by Friedlander in [12,

Proposition 17.4]. This proves the lemma and Theorem 4.5. �
5. Examples via Godeaux–Serre varieties

Let k be an algebraically closed field and � a prime different from the characteristic of k.
Let G be a finite �-group. For any given integer r � 1, Serre [35] has shown the existence of a
representation V of rank n + 1 over k and a smooth variety Y ⊂ P(V ) over k such that:

(a) G acts without fixed points on Y ;
(b) Y is a complete intersection of a number of hypersurfaces of P(V ) of degree d which are

smooth on Y and intersect transversally;
(c) dimk Y = r ;
(d) X := Y/G is a smooth projective variety over k;
(e) we observe that (b) and the weak Lefschetz theorem imply that the �-adic étale cohomology

of Y is isomorphic to the one of P(V ) up to dimension r − 1.

We will apply Serre’s construction in the following two cases.

5.1. The examples of Atiyah and Hirzebruch

Let us first review the argument of Atiyah and Hirzebruch in the light of étale homotopy
theory. We can formulate the following analogue of Proposition 6.6 of [3].
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Proposition 5.1. Let k and G be as above. For any positive integer n > 2, there is a smooth pro-
jective variety X such that the continuous Z�-cohomology of ÊtX is equal to the cohomology of
the product of Eilenberg–MacLane spaces K(Z�,2) × BG in Ŝ up to dimension n. In particular,
H ∗(G;Z�) is a direct factor of H ∗

ét(X;Z�) up to dimension n.

Proof. The proof is the analogue of the one in [3]. The remarkable thing is that it can be refor-
mulated in terms of étale homotopy. We choose r − 1 � n and define Y ⊂ P(V ) and X = Y/G

as above. Let O(1) → P(V ) be the canonical quotient line bundle on P(V ) and let η → Y be
its pullback to Y . Since G acts on these bundles, there is a bundle ξ on X such that η = π∗ξ ,
where π : Y → X is the covering map. We denote by u ∈ H 2(ÊtX;Z�) the first Chern class
of ξ . Let f : ÊtX → K(Z�,2) be a map in Ĥ representing u, let g : ÊtX → BG be the map
induced by the principal G-fibration ÊtY → ÊtX and let ḡ : ÊtY → EG be the covering map
of g in Ĥ, see [22] and [28]. Then (f ◦ Êtπ, ḡ) : ÊtY → K(Z�,2) × EG is the covering map
of (f, g) : ÊtX → K(Z�,2) × BG in Ĥ. Since the cohomology of EG is trivial and since the
cohomology of Êt P(V ) is isomorphic to the one of K(Z�,2) up to dimension r − 1, (e) above
implies that (f ◦ Êtπ, ḡ) induces an isomorphism in Z�-cohomology up to dimension r − 1.
Hence (f, g) : ÊtX → K(Z�,2) × BG induces an isomorphism in continuous Z�-cohomology
up to dimension r − 1. �

Now the same proof as in [3, Proposition 6.7], or in [7, Théorème 2.1], shows the following
proposition.

Proposition 5.2. Let G be the group (Z/�)3. There is a cohomology class y ∈ H 4(G;Z�) of
order � and a cohomology operation of odd degree that does not vanish on y.

For � = 2, the Steenrod operation of Proposition 5.2 is the Steenrod square Sq3 of degree 3.
For � odd, the operation is βP 1 of degree 2� − 1, where we denote by P 1 : Hi(G;Z/�) →
Hi+2(�−1)(G;Z/�) the first �th power operation and by β : Hi(G;Z/�) → Hi+1(G;Z/�) the
Bockstein operator induced by the short exact sequence

0 → Z� → Z� → Z/� → 0.

By the argument in the introduction, all odd degree cohomology operations vanish on the image
of the map θ : M̂U

∗
ét(X) ⊗M̂U

∗ Z� → H ∗
ét(X;Z�). Hence Propositions 5.1 and 5.2 show that

there is a cohomology class in H 4
ét(Y/G;Z�) that is not algebraic, which proves part (b) of

Corollary 1.2.
Steenrod operations on H ∗

ét(X;Z/�) have been constructed by Raynaud in [30]. They can

be also constructed using étale homotopy theory. Therefore, let by abuse of notation, Ĥ be the
homotopy category of profinite spaces with the more general model structure of [28]. For any
finite groups π and G and any positive integers n and m, there is a bijection between the set of
cohomology operations Hn(−;π) → Hm(−;G) of continuous cohomology of profinite spaces
and the set of maps HomĤ(K(π,n),K(G,m)) in Ĥ. Since π and G are finite groups, their
Eilenberg MacLane spaces are simplicial finite sets. So we have

Hom ˆ
(
K(π,n),K(G,m)

) = HomH
(
K(π,n),K(G,m)

)
.
H
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Applied to ÊtX of a scheme, this defines all primary cohomology operations on the étale coho-
mology of X. But in Ŝ also higher cohomology operations can be constructed just as in S . This
shows that also higher operations exist for étale cohomology via the étale realization functor.
When we are only interested in finite �-groups G and π , then the Z/�-model structure and its
homotopy category suffice for this purpose.

Finally, we remark that Soulé and Voisin showed in [36, Theorem 1], that Totaro’s topologi-
cal obstruction can only detect non-algebraic torsion cohomology classes whose order is small
relative to the dimension of the variety. Their proof applies in the same way in our situation in
positive characteristic. Hence with this method we cannot expect to find non-algebraic classes
with an arbitrary order compared to the dimension.

5.2. Nontrivial elements in the Griffiths group

Totaro has analyzed the kernel of the map MU∗X ⊗MU∗ Z/2 → H ∗(X,Z/2) over C and
constructed elements in the kernel that are in the image of the cycle map [37]. By transferring
the argument to étale homotopy theory, we now check that these varieties provide examples over
any algebraically closed field of characteristic �= 2 such that the classical cycle map to étale
cohomology is not injective. They correspond to the examples of [37, Theorems 7.1 and 7.2]. We
remind the reader of the comment in the introduction for other examples of the non-injectivity of
the map in (a) below.

Proposition 5.3. Let k be an algebraically closed field of characteristic �= 2.

(a) There is a smooth projective variety over k of dimension 7 such that the map CH2X/2 →
H 4

ét(X,Z/2) is not injective.

(b) There is a smooth projective variety over k of dimension 15 and an element α ∈ CH3X such
that 2α = 0 and α is homologically but not algebraically equivalent to zero.

Proof. We equip Ŝ with the Z/2-model structure. For both varieties we apply Serre’s construc-
tion to a suitable 2-group G to get a variety Y of dimension r with a G-action as above. By
Proposition 5.1, ÊtY/G → BG × K(Z�,2) induces an isomorphism in Z/�-cohomology up to
dimension r − 1. Hence ÊtY/G contains the r − 1-skeleton skr−1BG of BG up to weak equiv-
alence. Thus it suffices to find elements in M̂U

∗
(skr−1BG) ⊗M̂U

∗ Z/2. Note that since skr−1BG
is a finite simplicial set, the proof of Theorem 2.2 implies

M̂U
∗
(skr−1BG) ⊗M̂U

∗ Z/2 ∼= MU∗(skr−1BG) ⊗MU∗ Z/2. (6)

For (a), we take r = 8 and let G be the extra-special 2-group D(2) of order 32 with center Z/2
of Section 5 of [37]. The dimension of the associated Serre variety X = Y/G is then 7. Using
identification (6), the same argument as in the proof of Theorem 7.1 of [37] now applies. We
only have to observe that the representations A and B of G, which come from representations of
SO(4, k) under the restriction G ⊂ SO(4, k), can be defined over k. They yield k-vector bundles
of ranks 3 and 4, respectively. Since Chow groups define an oriented cohomology theory in the
sense of [19], there are Chern classes of vector bundles in CH∗X. After taking second Chern
classes, we get a nonzero cycle c2A − c2B in CH2X over k. Since étale cobordism is also an
oriented cohomology theory by Theorem 3.1, there are Chern classes of vector bundles as well.
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By [37], the image of the cycle c2A − c2B is nonzero in M̂U
4
X ⊗M̂U

∗ Z/2, but is mapped to
zero in H 4

ét(X,Z/2).
For (b), we choose r = 16 and G be D(2) × Z/2, where D(2) is as in (a). Again, using (6),

the arguments of [37, Theorem 7.2], apply to get a cycle on X over k. �
This finishes the proof of Corollary 1.2.
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