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Riemann, Poincare, Lefschetz:

Until the early 20th century, algebraic geometry 
and algebraic topology were part of the same 
discipline. 

For example, the idea of a Riemann surface grew out 
of the attempt to understand integrals of rational 
functions over the complex numbers. 
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A divorce soon regreted...

Topologists developed many powerful techniques, 

e.g., singular cohomology, homotopy groups, ...

For a variety X ⊂ Pn over the complex numbers:  
take the complex points X(C) and topologize it as a 
subspace in complex projective space. 

Write Xcl := X(C) for this topological space.
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It works:

This gives a well-defined homotopy type Xcl for 
complex varieties and, in particular, singular 
cohomology groups, fundamental groups, etc. 

For example, we can study subvarieties via their 
associated class in singular cohomology.   

This “cycle map” is the subject of the famous 
Hodge conjecture.   
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Now take the complex manifold XC(C) as before and 
get a homotopy type and topological invariants.  

Let K be a field of characteristic zero and X a 
variety over K. 

There is an embedding K⊂C and we can turn X 
into a variety XC over C. 

What about varieties over other fields of 
characteristic zero? 

So far so good:
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Running into trouble:

For varieties over fields of positive characteristic...?  

Let us remain modest and stick to a field K of 
characteristic zero for a moment.   

We took an embedding K⊂C and ...   

Wait: there is not just one embedding K⊂C and 
we have to make a choice!   

Grothendieck’s response: etale topology.   
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It becomes worse:

Let X be a variety over a field K of 
characteristic zero.  

Does the homotopy type of Xcl depend on the 
choice of an embedding K⊂C? 

A fundamental question:

Serre’s answer:  
Yes, it does!
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Thus, even though the two complex varieties 
Vφ and Vψ are conjugate, they have different 

homotopy types.   

Theorem (Serre):

There is a smooth projective variety V defined 
over a number field K and there are embeddings 

φ and ψ of K into C such that 

π1(Vφ) ≈ π1(Vψ)./ clcl
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Serre’s example:

Let us have a look at Serre’s example.   

k a quadratic imaginary field

R its ring of integers

Cl the ideal class group of k

K the absolute class field of k

h the class number = #Cl = [K:k].
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Serre’s example:

Key observation:

There is an elliptic curve E defined over K with 
End(E)=R.   

Conversely, every element of Cl is of the form 
eφ for some embedding φ: K⊂C and we have 


eφ = eφ’ if and only if φ’ is either equal to φ or 

to its complex conjugate.    

Given an embedding φ: K⊂C, π1(Eφ) is a 

projective R-module of rank one. Thus π1(Eφ)  

corresponds to an element eφ in Cl.   

cl

cl
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Serre’s example:

Choose p such that h > 1, e.g., p=23, h=3.

Let E be an elliptic curve over K with End(E)=R.   

There are embeddings φ and ψ of K in C such that 

π1(Eφ) is a free R-module of rank one, andcl

π1(Eψ) is not a free R-module (exists since h>1).cl

Let p be a prime congruent -1 modulo 4 and let   

k = Q(√-p).—-
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Take the abelian variety A = E(p-1)/2 over K.   

Let S be the ring of integers of the field of pth 
roots of unity. In fact, S is a free R-module of rank 
(p-1)/2. Then

π1(Aφ) is a free S-module of rank one, andcl

π1(Aψ) is not a free S-module of rank one.cl
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Now let Y be a hypersurface in CPp-1 given by 
the homogeneous equation   

p∑

i=1

X
p
i = 0

Let G be a cyclic group of order p. 

Then G acts on Y by permuting the variables, 
and on A, since S is a quotient of Z[G]. 

V := (Y x A)/G.Now we can define:

By the Lefschetz theorem, Y is simply-connecetd. 
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Serre’s example:

V is a smooth projective variety defined over K.  

V := (Y x A)/G. 

Etale locally V is a fiber bundle over Y/G with 
fiber A, and V → Y/G admits a section.   

This implies   

and

clcl

cl cl

π1(Vφ) ≈ π1(Aφ) ⋊ G

π1(Vψ) ≈ π1(Aψ) ⋊ G.

Finally:   clclπ1(Vφ) ≈ π1(Vψ)./

(Because: An isomorphism would imply that π1(Aφ) 

and π1(Aψ) were isomorphic as S-modules. ⚡ ) cl
cl
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The conclusion:

The classical topology is not an intrinsic invariant 
of varieties defined over a field K.  

Thus even in characteristic zero we need a 
“better” homotopy type:  

the etale homotopy type.
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The dream:
The “etale homotopy type” of a scheme should be 
a reasonable topological space which is

• defined over a base of any characteristic;

• an intrinsic invariant, i.e., only depend on the 
isomorphism type of the scheme; 

• functorial; in particular, for varieties over fields 
there should be a Galois action.

• a space whose cohomology and fundamental 
group should be equal to Grothendieck’s etale 
cohomology and etale fundamental group; 
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Why should we care:

• Grothendieck defined an etale fundamental 
group of schemes. But his method does not yield 
higher homotopy groups.

• Grothendieck’s and Quillen’s work on algebraic K-
theory “asks” for an etale version of topological 
K-theory. A good candidate: “topological” K-theory 
of the etale homotopy type.

• Quillen’s idea for a proof of the Adams 
conjecture, a purely topological statement.
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Proofs of the Adams conjecture:

We will discuss two methods to prove the Adams 
conjecture (and there are more). Both involve 
etale homotopy theory in an essential way.

• Today: Quillen-Friedlander’s approach. 

Compare spaces over complex numbers with spaces 
in characteristic p and use the Frobenius map.  

• In Lecture 3: Sullivan’s approach. 

Galois symmetries on profinite completions of 
spaces are induced by etale homotopy types.
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Spherical fibrations:

Let X be a finite CW-complex and let E be an n-
dimensional complex vector bundle over X. 

By endowing E with a Hermitean metric and 
looking at vectors of length 1 in E-0 we get a 
fiber bundle 

S(E) → X

with fiber a 2n-1-sphere S2n-1. 
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Fiber homotopy equivalence:

there are maps f and g  

We say that two fiber bundles F and F’ over X 

F F’

X

are “fiber homotopy

 equivalent” if  

f

g

and homotopy equivalences gf≃idF and fg≃idF’ which 
at each time t are maps of fiber bundles. 
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The J-homomorphism:

Let K(X) be the Grothendieck group of finite 
dimensional complex vector bundles over X. 

Let SF(X) be the Grothendieck group of spherical 
fibrations modulo fiber homotopy equivalence. 

The functor S(-) induces the J-homomorphism  

J: K(X) → SF(X).
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The Adams conjecture:

Let ψk be the kth Adams operation on K(X). It is 

a functorial ring homomorphism. For a line bundle 
L, it is ψk(L)=Lk in K(X). 

Adams’ conjecture: Let E be a complex vector bundle 
over a finite CW-complex X and k an integer. 

Then there is an integer n such that kn(ψkE-E) maps 

to zero under J. 

(In fact, Adams conjectures also the case of real 
vector bundles.) 
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The Quillen-Friedlander approach:

Let us assume we already knew there is a CW-
complex Vet which represents the etale homotopy 
type for every reasonable scheme V.  

The idea of the proof is based on three 
obeservations:
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Quillen’s observation 1:

• Homotopy types are visible in charateristic p.  

Let R be a strict henselization of Z at p, R⊂C an 
embedding and k=Fp the closed point of R, VR a 
proper smooth scheme over R.   

-

VC,cl → VC,et → VR,et ← Vk,et  ^^^ ^∼ ∼∼

Then there are canonical equivalences of spaces  

where ^ denotes profinite completion away from p.  
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Quillen’s observation 2:

• Frobenius maps give Adams operations.  

Let V be a scheme of characteristic p and E an 
algebraic vector bundle over V.   

Then we have an equality in K(V) 

ψp(E) = E(p). 

Let F: V→V be the Frobenius map and write  

E(p) = F*E. 
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• The Frobenius identifies sphere bundles.  

Quillen’s observation 3:

Let E be an algebraic vector bundle over a 
scheme in characteristic p.  

Frobenius E→E(p) restricts to E-0→E(p)-0   

and induces an equivalence   

(E-0)^ ≈ (E(p)-0)^.et et
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The Quillen-Friedlander proof:

It suffices to prove the conjecture for 

the Grassmannian Gr=:V and 

the canonical bundle E→V.   

Crucial point: The Grassmannian and the canonical 
bundle can be defined as schemes over the 
integers.    
Then we should be able to apply the observations 
in the following way:     

First of all, since ψab = ψa ψb, we can assume 

that k=p is a prime number.  
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Observe:      An element in the kernel of ΘL is 


of order pn for some n.

It suffices to show ΘL(J(ψpEC-EC)) = 0 in SF(VC,cl).    ^
For then we have pnJ(ψpEC-EC) = 0 in 

SF(VC,cl).    
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The Quillen-Friedlander proof:

We need to show: J(ψp(Ek)-Ek) = 0 in SF(Vk,et). ^

By “Frobenius = Adams operation” it suffices to show:

J(Ek(p)-Ek) in SF(Vk,et).^

This holds by Observation 3 and we are done!



Friedlander’s theorem:

There is a very difficult point we just assumed:    



Friedlander’s theorem:

There is a very difficult point we just assumed:    

• If V is a scheme over R and E an algebraic vector 
bundle of dimension n, then    

(E-0)et → Vet^ ^

is a (completed) (2n-1)-sphere fibration.    



Friedlander’s theorem:

There is a very difficult point we just assumed:    

• If V is a scheme over R and E an algebraic vector 
bundle of dimension n, then    

(E-0)et → Vet^ ^

is a (completed) (2n-1)-sphere fibration.    

In his thesis, Friedlander proved that geometric and 
homotopy fibers behave well under etale homotopy 
types, thereby proved the Adams conjecture.   


