Etale homotopy theory (after Artin-Mazur, Friedlander et al.)

Heidelberg March 18-20, 2014

Gereon Quick

Lecture 2: Construction

March 19, 2014

Let X be a scheme of finite type over a field k.

Let X be a scheme of finite type over a field k.

An "etale open set" of X is an etale map $U \rightarrow X$ which is the algebraic version of a local diffeomorphism.

Let X be a scheme of finite type over a field k.

An "etale open set" of X is an etale map $U \rightarrow X$ which is the algebraic version of a local diffeomorphism.

These etale open sets are great for defining sheaf cohomology.

There is also a more "topological way" to compute etale sheaf cohomology:

There is also a more "topological way" to compute etale sheaf cohomology:

Let F be a locally constant etale sheaf on X.

There is also a more "topological way" to compute etale sheaf cohomology:

Let F be a locally constant etale sheaf on X.

Let $\{U_i \rightarrow X\}_i$ be an etale cover.

There is also a more "topological way" to compute etale sheaf cohomology:

Let F be a locally constant etale sheaf on X.

Let $\{U_i \rightarrow X\}_i$ be an etale cover.

For each n≥0, form

 $U_{i0,...,in} = U_{i0} \times_X ... \times_X U_{in}$

 $U_{i0,...,in} = U_{i0}X_X...X_XU_{in}$

$$U_{i0,...,in} = U_{i0}x_x...x_xU_{in}$$

Set
$$C^n(U_\bullet;F):= \Pi H^0(U_{i0,...,in};F)$$
.

$$U_{i0,...,in} = U_{i0}x_{x}...x_{x}U_{in}$$

Set $C^n(U_\bullet;F):= \Pi H^0(U_{i0,...,in};F)$.

This defines a complex $C^*(U_{\bullet};F)$ whose cohomology is denoted by $H^n(U_{\bullet};F)$.

 $U_{i0,...,in} = U_{i0}x_{x}...x_{x}U_{in}$

Set $C^n(U_\bullet;F):= \Pi H^0(U_{i0,...,in};F)$.

This defines a complex $C^*(U_{\bullet};F)$ whose cohomology is denoted by $H^n(U_{\bullet};F)$.

But: The cohomology $H^*(U_\bullet;F)$ of a single covering does not compute the sheaf cohomology of X. The coverings are not "fine" enough.

$$U_{i0,...,in} = U_{i0}x_{x}...x_{x}U_{in}$$

Set $C^n(U_\bullet;F):= \Pi H^0(U_{i0,...,in};F)$.

This defines a complex $C^*(U_{\bullet};F)$ whose cohomology is denoted by $H^n(U_{\bullet};F)$.

But: The cohomology $H^*(U_\bullet;F)$ of a single covering does not compute the sheaf cohomology of X. The coverings are not "fine" enough.

(Would need: all Uio,...,in are contractible.)

Solution: Make coverings "finer and finer" and consider all at once.

Solution: Make coverings "finer and finer" and consider all at once.

For a variety X over a field there is an isomorphism

 $H^n(X;F) \approx colim_U H^n(U_\bullet;F)$

where the colimit ranges over all etale covers.

Solution: Make coverings "finer and finer" and consider all at once.

For a variety X over a field there is an isomorphism

$$H^n(X;F) \approx colim_U H^n(U_\bullet;F)$$

where the colimit ranges over all etale covers.

Observation: The global sections $H^0(U_{i0,...,in};F)$ only depend on the set of connected components $\pi_0(U_{i0,...,in})$.

The idea: Forming all possible $U_{i0,...,in}$'s yields a simplicial set $\pi_0(U_{\bullet})$.

The idea: Forming all possible $U_{i0,...,in}$'s yields a simplicial set $\pi_0(U_{\bullet})$.

For a variety X over a field, the colimit of the singular cohomologies of all the spaces $\pi_0(U_{\bullet})$'s computes the etale cohomology of X.

The idea:

Forming all possible $U_{i0,...,in}$'s yields a simplicial set $\pi_0(U_{\bullet})$.

For a variety X over a field, the colimit of the singular cohomologies of all the spaces $\pi_0(U_{\bullet})$'s computes the etale cohomology of X.

A candidate for an etale homotopy type:

the "system of all spaces $\pi_0(U_{\bullet})$'s".

The idea:

Forming all possible $U_{i0,...,in}$'s yields a simplicial set $\pi_0(U_{\bullet})$.

For a variety X over a field, the colimit of the singular cohomologies of all the spaces $\pi_0(U_{\bullet})$'s computes the etale cohomology of X.

A candidate for an etale homotopy type:

the "system of all spaces $\pi_0(U_{\bullet})$'s".

In order to make this idea work in full generality we need some preparations.

A category I is "cofiltering" if it has two properties:

A category I is "cofiltering" if it has two properties:

• for any i, $j \in I$ there is a k with $k \rightarrow i$ and $k \rightarrow j$;

A category I is "cofiltering" if it has two properties:

• for any i, $j \in I$ there is a k with $k \rightarrow i$ and $k \rightarrow j$;

• for any f,g: $i \rightarrow j$ there is an h:k $\rightarrow i$ with fh=gh.

A category I is "cofiltering" if it has two properties:

- for any i, $j \in I$ there is a k with $k \rightarrow i$ and $k \rightarrow j$;
- for any f,g: $i \rightarrow j$ there is an h:k $\rightarrow i$ with fh=gh.

Let C be a category. A "pro-object" $X=\{X_i\}_{\{i\in I\}}$ in C is a functor $I\to C$ where I is some cofiltering index category.

A category I is "cofiltering" if it has two properties:

- for any i, $j \in I$ there is a k with $k \rightarrow i$ and $k \rightarrow j$;
- for any f,g: $i \rightarrow j$ there is an h:k $\rightarrow i$ with fh=gh.

Let C be a category. A "pro-object" $X=\{X_i\}_{\{i\in I\}}$ in C is a functor $I\to C$ where I is some cofiltering index category.

We get a category pro-C by defining the morphisms to be

Hom $(X, Y) = \lim_{j \to 0} colim_i Hom (X_i, Y_j).$

Let H be the homotopy category of connected, pointed CW-complexes.

Let H be the homotopy category of connected, pointed CW-complexes.

H is equivalent to the homotopy category of connected, pointed simplicial sets.

Let H be the homotopy category of connected, pointed CW-complexes.

H is equivalent to the homotopy category of connected, pointed simplicial sets.

The objects of H will be called "spaces".

Let H be the homotopy category of connected, pointed CW-complexes.

H is equivalent to the homotopy category of connected, pointed simplicial sets.

The objects of H will be called "spaces".

The objects of pro-H will be called "pro-spaces".

Let $X=\{X_i\}_{\{i\in I\}}$ be a pro-object in H.

Let $X=\{X_i\}_{i\in I}$ be a pro-object in H.

The homotopy groups of X are defined as the progroups

$$\pi_n(X) = {\pi_n(X_i)}_{i \in I}.$$

Let $X=\{X_i\}_{\{i\in I\}}$ be a pro-object in H.

The homotopy groups of X are defined as the progroups

$$\pi_n(X) = {\pi_n(X_i)}_{\{i \in I\}}.$$

For A an abelian group, the homology groups of X are

$$H_n(X;A) = \{H_n(X_i;A)\}_{\{i \in I\}}.$$

Cohomology of pro-spaces:

Cohomology of pro-spaces:

Let A be an abelian group. The cohomology groups of X are defined as the groups

 $H^n(X;A) = colim_i H^n(X_i;A).$

Cohomology of pro-spaces:

Let A be an abelian group. The cohomology groups of X are defined as the groups

 $H^n(X;A) = colim_i H^n(X_i;A).$

If A is has an action by $\pi_1(X)$, then there are also cohomology groups of X with local coefficients in A.

Completion of groups:

Completion of groups:

Let L be a set of primes and let LGr be the full subcategory finite L-groups in the category of groups Gr.

Completion of groups:

Let L be a set of primes and let LGr be the full subcategory finite L-groups in the category of groups Gr.

There is an L-completion functor

^: Gr → pro-LGr

such that Hom $(G,K) \approx Hom (G^*,K)$ for K in LGr.

Completion of spaces:

Completion of spaces:

Let L be a set of primes and let LH be the full subcategory of H consisting of spaces whose homotopy groups are finite L-groups.

Completion of spaces:

Let L be a set of primes and let LH be the full subcategory of H consisting of spaces whose homotopy groups are finite L-groups.

Artin and Mazur show that there is an L-completion functor

^: pro-H → pro-LH

such that Hom $(X,W) \approx Hom (X^*,W)$ for W in LH.

The canonical map X-X induces isomorphisms

The canonical map X-X induces isomorphisms

of pro-finite L-groups

$$(\pi_1(X))^{\sim} \approx \pi_1(X^{\sim})$$

The canonical map $X \rightarrow X^{\circ}$ induces isomorphisms

of pro-finite L-groups

$$(\pi_1(X))^{\sim} \approx \pi_1(X^{\sim})$$

of cohomology groups

$$H^n(X;A) \approx H^n(X^*;A)$$

if A is a finite abelian L-group.

A warning: Isomorphisms in pro-H
A map X-Y in pro-H which induces isomorphisms
on all homotopy groups is not necessarily an
isomorphism in pro-H.

A warning: Isomorphisms in pro-H
A map X-Y in pro-H which induces isomorphisms
on all homotopy groups is not necessarily an
isomorphism in pro-H.

To see this, let $cosk_n$: $H \rightarrow H$ be the coskeleton functor which kills homotopy in dimension $\geq n$.

A warning: Isomorphisms in pro-H
A map X-Y in pro-H which induces isomorphisms
on all homotopy groups is not necessarily an
isomorphism in pro-H.

To see this, let $cosk_n$: $H \rightarrow H$ be the coskeleton functor which kills homotopy in dimension $\geq n$.

Let X be a space and let X# be the inverse system

$$X^{\#} = \{ cosk_n X \}.$$

There is a canonical map $X \rightarrow X^{\#} = \{cosk_nX\}$ in pro-H, which induces an isomorphism on all (pro-) homotopy groups.

There is a canonical map $X \rightarrow X^{\#} = \{ cosk_n X \}$ in pro-H, which induces an isomorphism on all (pro-) homotopy groups.

The inverse of this map would be an element in $colim_n$ Hom $(cosk_nX, X)$.

There is a canonical map $X \rightarrow X^{\#} = \{cosk_nX\}$ in pro-H, which induces an isomorphism on all (pro-) homotopy groups.

The inverse of this map would be an element in

 $colim_n$ Hom $(cosk_nX, X)$.

Hence the inverse exists if and only if

 $X = cosk_nX$ for some integer n.

Isomorphisms in pro-H:

This led Artin and Mazur to introduce the following notion:

Isomorphisms in pro-H:

This led Artin and Mazur to introduce the following notion:

A map $f:X\to Y$ in pro-H is a "#-isomomorphism" if the induced map $f^{\#}:X^{\#}\to Y^{\#}$ is an isomorphism in pro-H.

Isomorphisms in pro-H:

This led Artin and Mazur to introduce the following notion:

A map $f:X\to Y$ in pro-H is a "#-isomomorphism" if the induced map $f^{\#}:X^{\#}\to Y^{\#}$ is an isomorphism in pro-H.

Theorem (Artin-Mazur): A map $f:X \rightarrow Y$ in pro-H is a #-isomorphism if and only if f induces an

 $\pi_n(f): \pi_n(X) \stackrel{\approx}{\to} \pi_n(Y) \text{ for all } n \geq 0.$

Let X-Y be map in pro-H and L a set of primes.

Then f^:X^-Y^ is a #-isomorphism if and only if finduces isomorphisms

Let $X \rightarrow Y$ be map in pro-H and L a set of primes. Then $f^*: X^* \rightarrow Y^*$ is a #-isomorphism if and only if finduces isomorphisms

• $\pi_1(X)^{\sim} \approx \pi_1(Y)^{\sim}$ and

Let $X \rightarrow Y$ be map in pro-H and L a set of primes. Then $f^:X^* \rightarrow Y^*$ is a #-isomorphism if and only if finduces isomorphisms

- $\pi_1(X)^{\circ} \approx \pi_1(Y)^{\circ}$ and
- $H^n(Y;A) \approx H^n(X;A)$ for every $n \ge 0$ and every $\pi_1(Y)$ -twisted coefficient group A which is a finite abelian L-group such that the action of $\pi_1(Y)$ factors through $\pi_1(Y)$ ^.

The canonical map $X \rightarrow X^{\hat{}}$ induces a group homomorphism for every n

$$(\pi_n(X))^{\wedge} \rightarrow \pi_n(X^{\wedge}).$$

The canonical map $X \rightarrow X^{\hat{}}$ induces a group homomorphism for every n

$$(\pi_n(X))^{\wedge} \rightarrow \pi_n(X^{\wedge}).$$

For n≥2, this map is in general not an isomorphism.

The canonical map $X \rightarrow X^{\hat{}}$ induces a group homomorphism for every n

$$(\pi_n(X))^{\wedge} \rightarrow \pi_n(X^{\wedge}).$$

For n≥2, this map is in general not an isomorphism.

But: Suppose that X is simply-connected and all $\pi_n(X)$'s are "L-good" groups. Then

 $(\pi_n(X))^{\hat{}} \approx \pi_n(X^{\hat{}})$ for all n.

Completion vs homotopy (continued):

The canonical map $X \rightarrow X^{\hat{}}$ induces a group homomorphism for every n

$$(\pi_n(X))^{\wedge} \rightarrow \pi_n(X^{\wedge}).$$

For n≥2, this map is in general not an isomorphism.

But: Suppose that X is simply-connected and all $\pi_n(X)$'s are "L-good" groups. Then

$$(\pi_n(X))^{\sim} \approx \pi_n(X^{\sim})$$
 for all n.

(There are improvements by Sullivan.)

Let G be a pro-group. The canonical map $\mu:G\to G^{\hat{}}$ to the pro-L-completion induces a homomorphism

 μ^* : Hⁿ(G[^];A) \rightarrow Hⁿ(G;A).

Let G be a pro-group. The canonical map $\mu:G\to G^{\hat{}}$ to the pro-L-completion induces a homomorphism

 μ^* : Hⁿ(G[^];A) \rightarrow Hⁿ(G;A).

Serre calls G "L-good" if μ^* is an isomorphism for all n≥0 and every G^-module A which is a finite abelian L-group.

Let G be a pro-group. The canonical map $\mu:G\to G^{\hat{}}$ to the pro-L-completion induces a homomorphism

$$\mu^*$$
: Hⁿ(G[^];A) \rightarrow Hⁿ(G;A).

Serre calls G "L-good" if μ^* is an isomorphism for all n≥0 and every G^-module A which is a finite abelian L-group.

For example: finitely gen. abelian groups are good; $\pi_1(X)$ of a smooth connected curve X is good.

Let X be a pro-space such that

Let X be a pro-space such that

• π₁(X) is L-good

Let X be a pro-space such that

- π₁(X) is L-good
- $\pi_n(X)$ is L-good for neq with "good" $\pi_1(X)$ -action.

Let X be a pro-space such that

- π₁(X) is L-good
- $\pi_n(X)$ is L-good for neq with "good" $\pi_1(X)$ -action.

Then $(\pi_n(X))^{\hat{}} \to \pi_n(X^{\hat{}})$ is an isomorphism for $n \le q$.

Let X be a pro-space such that

- π₁(X) is L-good
- $\pi_n(X)$ is L-good for neq with "good" $\pi_1(X)$ -action.

Then $(\pi_n(X))^{\hat{}} \to \pi_n(X^{\hat{}})$ is an isomorphism for $n \le q$.

This is an improvement due to Sullivan of the results by Artin-Mazur.

Completion vs homotopy: Classifying spaces

Completion vs homotopy: Classifying spaces

Let $G=\{G_i\}$ be a pro-group and $K(G,1)=\{K(G_i,1)\}$ its classifying pro- space such that

$$\pi_1(K(G,1)) = G$$
 and

$$\pi_n(K(G,1)) = 0 \text{ for } n \neq 0.$$

Completion vs homotopy: Classifying spaces

Let $G=\{G_i\}$ be a pro-group and $K(G,1)=\{K(G_i,1)\}$ its classifying pro-space such that

$$\pi_1(K(G,1)) = G$$
 and

$$\pi_n(K(G,1)) = 0 \text{ for } n \neq 0.$$

Then G is L-good if and only if the canonical map of pro-groups $G \rightarrow G^{\circ}$ induces a #-isomorphism

$$K(G,1) \approx K(G^{1},1).$$

Sullivan's homotopy limits:

Sullivan's homotopy limits: Let $X=\{X_i\}$ be in pro-H.

Sullivan's homotopy limits:

Let $X=\{X_i\}$ be in pro-H.

The "limit of X" is, in general, not well-defined in H.

Sullivan's homotopy limits:

Let $X=\{X_i\}$ be in pro-H.

The "limit of X" is, in general, not well-defined in H.

Sullivan: If each X_i has finite homotopy groups, then the functor

 $\lim_{i} [-,X_i]: H^{op} \rightarrow Sets$

is representable in H by a CW-complex, which he denotes by $\lim_{i \to \infty} X_i$.

Let X be a connected, pointed scheme.

Let X be a connected, pointed scheme.

We assume that X is locally connected for the etale topology, i.e., if $U \rightarrow X$ is etale, then U is the coproduct of its connected components.

Let X be a connected, pointed scheme.

We assume that X is locally connected for the etale topology, i.e., if $U \rightarrow X$ is etale, then U is the coproduct of its connected components.

For example: X is locally noetherian.

Let $U \rightarrow X$ be an etale covering.

Let U-X be an etale covering.

We can form the Cech covering associated to $U\rightarrow X$.

This is the simplicial scheme $U_{\bullet} = cosk_0(U)_{\bullet}$

Let $U \rightarrow X$ be an etale covering.

We can form the Cech covering associated to $U\rightarrow X$.

This is the simplicial scheme $U_{\bullet} = cosk_0(U)_{\bullet}$

$$U \leftrightarrows Ux_XU \rightleftarrows Ux_XUx_XU \rightleftarrows Ux_XUx_XUx_XU \dots$$

i.e. U_n is the n+1-fold fiber product of U over X.

To form a Cech covering, we take an etale map $U \rightarrow X$ and then we mechanically form U_{\bullet} .

To form a Cech covering, we take an etale map $U \rightarrow X$ and then we mechanically form U_{\bullet} .

In other words, each U_n is determined by $U \rightarrow X$.

To form a Cech covering, we take an etale map $U \rightarrow X$ and then we mechanically form U_{\bullet} .

In other words, each U_n is determined by $U \rightarrow X$.

Drawbck: Cech coverings are often not fine enough to provide the correct invariants.

To form a Cech covering, we take an etale map $U \rightarrow X$ and then we mechanically form U_{\bullet} .

In other words, each U_n is determined by $U \rightarrow X$.

Drawbck: Cech coverings are often not fine enough to provide the correct invariants.

Problem: We have no flexibility for forming Un.

To form a Cech covering, we take an etale map $U \rightarrow X$ and then we mechanically form U_{\bullet} .

In other words, each U_n is determined by $U \rightarrow X$.

Drawbck: Cech coverings are often not fine enough to provide the correct invariants.

Problem: We have no flexibility for forming U_n .

Idea: Choose coverings in each dimensions for forming U.

• Take an etale covering $U \rightarrow X$ and set $U_0:=U$.

- Take an etale covering $U \rightarrow X$ and set $U_0:=U$.
- Form $U_0x_XU_0$ and choose an etale covering $U_1 \rightarrow U_0x_XU_0$. $U_0x_XU_0$ is in fact equal $(cosk_0U_0)_1$.

- Take an etale covering $U \rightarrow X$ and set $U_0:=U$.
- Form $U_0x_XU_0$ and choose an etale covering $U_1 \rightarrow U_0x_XU_0$. $U_0x_XU_0$ is in fact equal $(cosk_0U_0)_1$.
- Turn U_1 into a simplicial object (cosk₁ U_1). and choose an etale covering $U_2 \rightarrow (cosk_1U_1)_2$.

•••

- Take an etale covering $U \rightarrow X$ and set $U_0:=U$.
- Form $U_0x_XU_0$ and choose an etale covering $U_1 \rightarrow U_0x_XU_0$. $U_0x_XU_0$ is in fact equal $(cosk_0U_0)_1$.
- Turn U_1 into a simplicial object (cosk₁ U_1). and choose an etale covering $U_2 \rightarrow (cosk_1U_1)_2$.

 Continuing this process leads to a hypercovering of X.

A "hypercovering" of X is a simplicial object U. in the category of schemes etale over X such that

A "hypercovering" of X is a simplicial object U. in the category of schemes etale over X such that

• $U_0 \rightarrow X$ is an etale covering;

A "hypercovering" of X is a simplicial object U. in the category of schemes etale over X such that

- $U_0 \rightarrow X$ is an etale covering;
- For every $n \ge 0$, the canonical map $U_{n+1} \rightarrow (cosk_nU_{\bullet})_{n+1}$ is an etale covering.

A "hypercovering" of X is a simplicial object U. in the category of schemes etale over X such that

- $U_0 \rightarrow X$ is an etale covering;
- For every $n \ge 0$, the canonical map $U_{n+1} \rightarrow (cosk_nU_{\bullet})_{n+1}$ is an etale covering.

All hypercoverings of X form a category.

A "hypercovering" of X is a simplicial object U. in the category of schemes etale over X such that

- $U_0 \rightarrow X$ is an etale covering;
- For every $n \ge 0$, the canonical map $U_{n+1} \rightarrow (cosk_nU_{\bullet})_{n+1}$ is an etale covering.

All hypercoverings of X form a category.

But: This category is not cofiltering!

Solution: We take homotopy classes of maps as morphisms.

Solution: We take homotopy classes of maps as morphisms.

The category HR(X) of hypercoverings of X and simplicial homotopy classes of maps between hypercoverings as morphisms is cofiltering.

Solution: We take homotopy classes of maps as morphisms.

The category HR(X) of hypercoverings of X and simplicial homotopy classes of maps between hypercoverings as morphisms is cofiltering.

Verdier's theorem: Let F be an etale sheaf on X. Then for every $n \ge 0$ there is an isomorphism

 $H^n(X;F) \approx colim_{U \in HR(X)} H^n(F(U_{\bullet})).$

The "etale homotopy type" Xet of X is the pro-space

$$HR(X) \rightarrow H$$

$$U_{\bullet} \mapsto \pi_0(U_{\bullet}).$$

The "etale homotopy type" Xet of X is the pro-space

$$HR(X) \rightarrow H$$

$$U_{\bullet} \mapsto \pi_0(U_{\bullet}).$$

The etale homotopy type is a functor from the category of locally noetherian schemes to pro-H.

The "etale homotopy type" Xet of X is the pro-space

$$HR(X) \rightarrow H$$

 $U_{\bullet} \mapsto \pi_0(U_{\bullet}).$

The etale homotopy type is a functor from the category of locally noetherian schemes to pro-H.

Note: Since we had to take homotopy classes of maps of hypercoverings, X_{et} is only a pro-object in the homotopy category H.

Etale homology and cohomology:

Etale homology and cohomology:

Let F be a locally constant etale sheaf of abelian groups on X. Then F corresponds uniquely to a local coefficient group on X_{et} .

Etale homology and cohomology:

Let F be a locally constant etale sheaf of abelian groups on X. Then F corresponds uniquely to a local coefficient group on X_{et} .

The cohomology of X_{et} is the etale cohomology of X:

 $H_{et}^n(X;F) \approx H^n(X_{et};F)$ for all $n \ge 0$ and every locally constant etale sheaf F on X.

The etale homotopy groups are defined as

$$\pi_n(X) := \pi_n(X_{et})$$
 for all $n \ge 0$.

The etale homotopy groups are defined as

$$\pi_n(X) := \pi_n(X_{et})$$
 for all $n \ge 0$.

In general: $\pi_1(X_{et})$ is different from the profinite etale fundamental group of Grothendieck in SGA 1 (but it is the one of SGA 3).

The etale homotopy groups are defined as

$$\pi_n(X) := \pi_n(X_{et})$$
 for all $n \ge 0$.

In general: $\pi_1(X_{et})$ is different from the profinite etale fundamental group of Grothendieck in SGA 1 (but it is the one of SGA 3).

For: $\pi_1(X_{et})$ takes all etale covers into account, not just finite ones.

But: If X is "geometrically unibranch", i.e., the integral closure of its local rings is again local, then X_{et} is a pro-object in the category H_{fin} of spaces with finite homotopy groups.

But: If X is "geometrically unibranch", i.e., the integral closure of its local rings is again local, then X_{et} is a pro-object in the category H_{fin} of spaces with finite homotopy groups.

In this case: $\pi_n(X_{et})$ is profinite and $\pi_1(X_{et})$ equals Grothendieck's etale fundamental group in SGA 1.

But: If X is "geometrically unibranch", i.e., the integral closure of its local rings is again local, then X_{et} is a pro-object in the category H_{fin} of spaces with finite homotopy groups.

In this case: $\pi_n(X_{et})$ is profinite and $\pi_1(X_{et})$ equals Grothendieck's etale fundamental group in SGA 1.

For example: every normal scheme (local rings are integrally closed) is a geometrically unibranch.

We achieved our goal:

We achieved our goal:

• The etale homotopy type is an intrinsic topological invariant of X.

We achieved our goal:

 The etale homotopy type is an intrinsic topological invariant of X.

• It contains the information of known etale topological invariants.