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Towards the idea:

Let X be a scheme of finite type over a field k.

An “etale open set” of X is an etale map U—X which

is the algebraic version of a local diffeomorphism.

These etale open sets are great for defining
sheaf cohomology.
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Cech coverings:

There is also a more "topological way” to compute
etale sheaf cohomology:

Let F be a locally constant etale sheaf on X.
Let {Ui—X}i be an etale cover.

For each n20, form

Uio,...in = Uio Xx ... Xx Uin
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Cech complex: Uio,..,in = UioXx...XxUin

Set C"(U.;F):= TTHO(Uio,...in;F).

This defines a complex C*(U.;F) whose cohomology is
denoted by H"(U.;F).

But: The cohomology H*(U.;F) of a single covering
does not compute the sheaf cohomology of X. The
coverings are not “fine” enough.

(Would need: all Uio_.in are contractible.)
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Cech cohomology:

Solution: Make coverings “finer and finer” and
consider all at once.

For a variety X over a field there is an isomorphism
H" (X;F) = colimy H"(U.;F)

where the colimit ranges over all etale covers.

Observation: The global sections H%(Ui,..,in;F) only
depend on the set of connected components mo(Uio,.in).
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The idea:
Forming all possible Ui, .S Yyields a simplicial set

mo(Us).

For a variety X over a field, the colimit of the
singular cohomologies of all the spaces mo(Us)'s
computes the etale cohomology of X.

A candidate for an etale homotopy type:

the “system of all spaces mo(U.)s".

In order to make this idea work in full generality
we need some preparations.
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Pro-objects:
A category I is “cofiltering” if it has two properties:

e for any i,jel there is a k with K—i and k—j;

e for any f,g: i—>j there is an h:k—i with fh=gh.
Let C be a category. A “pro-object” X={Xi}ici; in C is
a functor I—C where I is some cofiltering index

category.

We get a category pro-C by defining the
morphisms to be

Hom (X, Y) = lim; colim; Hom (X, Y).
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Let H be the homotopy category of
connected, pointed CW-complexes.

H is equivalent fo the homotopy category of
connected, pointed simplicial sets.

The objects of H will be called “spaces”.

The objects of pro-H will be called "pro-spaces”.
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Pro-homotopy groups:
Let X={Xi}sic; be a pro-object in H.

The homotopy groups of X are defined as the pro-
groups

n (X) = {1mn (Xi)}{iel}-

For A an abelian group, the homology groups of X
are

Hy (X:A) = Hn (Xi;Mtien.
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Cohomology of pro-spaces:

Let A be an abelian group. The cohomology groups of
X are defined as the groups

H" (X;A) = colim; H" (Xi;A).

If A is has an action by m(X), then there are also
cohomology groups of X with local coefficients in A.
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Completion of groups:

Let L be a set of primes and let LGr be the full
subcategory finite L-groups in the category of
groups Gr.

There is an L-completion functor

" : Gr — pro-LGr

such that Hom (GK) =~ Hom (G” K) for K in LGr.
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Completion of spaces:

Let L be a set of primes and let LH be the full
subcategory of H consisting of spaces whose
homotopy groups are finite L-groups.

Artin and Mazur show that there is an L-completion
functor

" : pro-H — pro-LH

such that Hom (X,W) =~ Hom (X" W) for W in LH.
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Completion and invariants:

The canonical map X—X" induces isomorphisms
e of pro-finite L-groups

(m(X))” = m(X")
e of cohomology groups

H'(X;A) = H'(X";A)

if A is a finite abelian L-group.
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A warning: Isomorphisms in pro-H

A map X—Y in pro-H which induces isomorphisms

on all homotopy groups is not necessarily an
Isomorphism in pro-H.

To see this, let cosk,: H—H be the coskeleton

functor which kills homotopy in dimension >n.

Let X be a space and let X* be the inverse system

X# — {COSan}.
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A warning: Isomorphisms in pro-H

There is a canonical map X—X* = {cosk,X} in pro-H,

which induces an isomorphism on all (pro-) homotopy
groups.

The inverse of this map would be an element in
colim, Hom (cosknX, X).

Hence the inverse exists if and only if

X = cosknX for some integer n.
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Isomorphisms in pro-H:

This led Artin and Mazur to infroduce the following
notion:

A map f:X—Y in pro-H is a "#-isomomorphism” if the

induced map f#*:X*¥—Y# is an isomorphism in pro-H.

Theorem (Artin-Mazur): A map f:X—Y in pro-H is a

H#-isomorphism if and only if f induces an

mn(f): mn(X) = mn(Y) for all n20.
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#-i1somorphisms and a Whitehead theorem:

Let X—Y be map in pro-H and L a set of primes.
Then f":X"—=Y" is a #-isomorphism if and only if

f induces isomorphisms
e mi(X)" =~ m(Y)" and

e H'(Y;A) = H'(X;A) for every n20

and every m(Y)-twisted coefficient group A
which is a finite abelian L-group such that the
action of mi(Y) factors through m(Y)".
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Completion vs homotopy (continued):

The canonical map X—X" induces a group

homomorphism for every n
(ma(X))” = ma(X").

For n22, this map is in general not an isomorphism.

But: Suppose that X is simply-connected and all
mi(X)s are "L-good” groups. Then

(ma(X))” = ma(X") for all n.

(There are improvements by Sullivan.)
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Completion vs homotopy: "good” groups

Let G be a pro-group. The canonical map u:G—G”~

to the pro-L-completion induces a homomorphism

uw* : H(G™;A) — H(G;A).

Serre calls G "L-good” if u* is an isomorphism for
all n20 and every G -module A which is a finite
abelian L-group.

For example: finitely gen. abelian groups are good;
m(X) of a smooth connected curve X is good.
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Completion vs homotopy: "good” spaces

Let X be a pro-space such that

o m(X) is L-good

o my(X) is L-good for n<q with “good” mi(X)-action.
Then (my(X))” — ma(X") is an isomorphism for n<q.

This is an improvement due to Sullivan of the
results by Artin-Mazur.
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Completion vs homotopy: Classifying spaces

Let G={Gi} be a pro-group and K(G,1)=1K(G;,1)} its
classifying pro- space such that

m(K(G,1)) = G and
m(K(G,1)) = O for n#O.

Then G is L-good if and only if the canonical map
of pro-groups G—G” induces a #-isomorphism

K(G,1) = K(G",1).
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Sullivans homotopy limits:
Let X=1Xi} be in pro-H.

The “limit of X" is, in general, not well-defined in H.

Sullivan: If each Xi has finite homotopy groups, then
the functor

lim; [-,Xi]: HP — Sets

IS representable in H by a CW-complex,
which he denotes by lim; X.
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Towards hypercoverings:
Let X be a connected, pointed scheme.

We assume that X is locally connected for the
etale topology, i.e., if U—X is etale, then U is the

coproduct of its connected components.

For example: X is locally noetherian.
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Cech coverings:

Let U—>X be an etale covering.

We can form the Cech covering associated to U—X.

This is the simplicial scheme U. = cosko(U)s

—

U & UxxU & UxxUxxU & UxxUxxUxxU
e =

11

l.e. Uy is the n+l-fold fiber product of U over X.
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From Cech- to hypercoverings:

To form a Cech covering, we take an etale map
U—X and then we mechanically form U..

In other words, each U, is determined by U—X.

Drawbck: Cech coverings are often not fine enough
to provide the correct invariants.

Problem: We have no flexibility for forming Uh.

Idea: Choose coverings in each dimensions for
forming U..
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Hypercoverings:

® Take an etale covering U—>X and set Up:=U.

e Form UoxxUo and choose an etale covering
U; — UoxxUop. UoxxUp is in fact equal (COSkoUo)1.

e Turn U; into a simplicial object (coskiUi)s
and choose an etale covering Uz — (coskiU1)2.

e Continuing this process leads to a
hypercovering of X.
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Hypercoverings:

A “hypercovering” of X is a simplicial object U. in
the category of schemes etale over X such that

e Upo—X Is an etale covering;

® For every n20, the canonical map
Un+1 — (cosknUe)ns1 is an etale covering.

All hypercoverings of X form a category.

But: This category is not cofiltering !
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Homotopy and hypercoverings:

Solution: We take homotopy classes of maps as
morphisms.

The category HR(X) of hypercoverings of X and
simplicial homotopy classes of maps between
hypercoverings as morphisms is cofiltering.

Verdiers theorem: Let F be an etale sheaf on X.
Then for every n20 there is an isomorphism

H(X;F) = colimuyecHr(x) H"(F(U.)).
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The etale homotopy type:

The “etale homotopy type” X.: of X is the pro-space

HR(X) — H
Ue > 110(Us).

The etale homotopy type is a functor from the
category of locally noetherian schemes to pro-H.

Note: Since we had to take homotopy classes of

maps of hypercoverings, Xet is only a pro-object in
the homotopy category H.
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Etale homology and cohomology:

Let F be a locally constant etale sheaf of abelian

groups on X. Then F corresponds uniquely to a local
coefficient group on Xe:.

The cohomology of Xt is the etale cohomology of X:

1(X;F) = H'(Xet;F) for all n20 and
every locally constant etale sheaf F on X.
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Etale homotopy groups:

The etale homotopy groups are defined as

mn(X) := ma(Xet) for all n20.

In general: m(Xet) is different from the profinite
etale fundamental group of Grothendieck in SGA 1
(but it is the one of SGA 3).

For: m(Xet) takes all etale covers into account, not
just finite ones.
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Etale homotopy groups:

But: If X is “geometrically unibranch”, i.e., the
integral closure of its local rings is again local, then
Xet IS a pro-object in the category Hsa, of spaces
with finite homotopy groups.

In this case: mn(Xet) is profinite and mi(Xet) equals
Grothendieck’s etale fundamental group in SGA 1.

For example: every normal scheme (local rings are
integrally closed) is a geometrically unibranch.
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We achieved our goal:

® The etale homotopy type is an intrinsic topological
invariant of X.

e It contains the information of known etale
topological invariants.



