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Our selection of applications:

• Friedlander’s etale K-theory

• Dugger-Isaken’s Sums of squares formulas

• Rational points and homotopy fixed points

• Sullivan’s Galois symmetries in topology

For more applications see Friedlander’s great book. 

• Comparisons

• Etale realizations of motivic spaces

• Algebraic cycles and etale cobordism



• Comparison theorems:



• Comparison theorems:

Let X be a connected pointed scheme of finite 
type over C. 



• Comparison theorems:

Let X be a connected pointed scheme of finite 
type over C. 

Denote by Xcl the homotopy type of X in the 
classical topology.   



• Comparison theorems:

Let X be a connected pointed scheme of finite 
type over C. 

Denote by Xcl the homotopy type of X in the 
classical topology.   

There is a canonical map ε: Xcl → Xet in pro-H.   



Comparison theorems:



Generalized Riemann Existence Theorem:


The map ε: Xcl → Xet becomes an isomorphism in 

pro-H after profinite completion.   

Comparison theorems:



Generalized Riemann Existence Theorem:


The map ε: Xcl → Xet becomes an isomorphism in 

pro-H after profinite completion.   

Comparison theorems:

For X geometrically unibranch: 

Xcl ≈ Xet in pro-H.   ^



Comparison theorems:

For X connected and geometrically unibranch: 

π1(Xcl)^ ≈ π1(Xet) as profinite groups.   



Comparison theorems:

If X is geometrically unibranch and Xcl is simply 
connected: 

πn(Xcl)^ ≈ πn(Xet) for all n.   

For X connected and geometrically unibranch: 

π1(Xcl)^ ≈ π1(Xet) as profinite groups.   
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Serre’s example revisited:

Let X be connected scheme over a field k of 
charactersitic zero. Let X1 and X2 be the schemes 
over C obtained via two different embeddings of 
k into C.  
Then after profinite completion there is an 
isomorphism in pro-H: 

 X1,cl ≈ X2,cl.^^

Thus the possible difference of the homotopy 
types of X1,cl and X2,cl vanishes after completion. 
To prove this we use etale homotopy theory. 



Comparison of characteristics:



Comparison of characteristics:

Let R be a discrete valuation ring with separably 
algebraically closed residue field k.   



Comparison of characteristics:

Let R be a discrete valuation ring with separably 
algebraically closed residue field k.   

Let X be a smooth proper scheme over R with 
connected fibers X0 and X1.    



Comparison of characteristics:

Let R be a discrete valuation ring with separably 
algebraically closed residue field k.   

Let X be a smooth proper scheme over R with 
connected fibers X0 and X1.    

There is a canonical isomorphism in pro-H     

X1,et ≈ X0,et     

where ^ denotes completion away from char k.    

^ ^
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can be defined as 
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K1(Y;Z/m) = Hompro-H (S1 ∧ C(m) ∧ Y, #BU).

where #BU = {coskn BU}n ∈ pro-H. 

If X is a scheme of finite type over a complete 
discrete valuation ring with separably closed 
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If X is a complex variety, then

K* (X;Z/m) ≈ K*(Xcl;Z/m).et

There is an Atiyah-Hirzebruch spectral sequence

E2 = H* (X;Z/m) ⇒ K* (X;Z/m).et et
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Galois action on etale K-theory:

Let X be a variety over a field k with absolute 
Galois group Gk=Gal(k/k).-

-
et

There is a natural action by Gk on 

K* (Xxkk;Z/m).

Dwyer and Friedlander interpreted important 
arithmetic questions in terms of this Galois action 
on etale K-theory.
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were more sophisticated definitions of etale K-
theory by Friedlander, Dwyer-Friedlander and 
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Algebraic vs etale K-theory:

There is a “Bott element” β in Kalg whose image in 

Ket is invertible. 

Thomason: If X is a smooth quasi-projective variety 
over a field of characteristic ≠ l of finite mod-l 
etale cohomological dimension, then

Kalg(X;Z/ln)[β-1] → Ket(X;Z/ln)

is an isomorphism. 

* *
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Algebraic vs etale K-theory:

Without inverting β in Kalg there is the 

“Quillen-Lichtenbaum conjecture”:   

Ki  (X;Z/n) → Ki (X;Z/n)alg et

If X is a smooth variety over a field and n is 
invertible in k, then the natural map   

is an isomorphism for i-1 ≥ mod-n etale 
cohomological dimension of X.  

Note: The “Quillen-Lichtenbaum conjecture” follows 
from the “Bloch-Kato conjecture”.   
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Let us have a second look at the (complex version 
of the) Adams conjecture:

Let BG be the classifying space of (stable) spherical 
fibrations. 

Let BU(n) be the Grassmannian of complex n-planes, 
BU be the infinite complex Grassmannian.   
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Sullivan and Galois symmetries in topology:
Adams: For all k, the map 

J°(ψk-1) : BU(n) → BU → BG[1/k]

is null-homotopic, i.e., homotopic to a constant map.
First step: As in Lecture 1, it suffices to consider 
the p-completed maps (for each p with (k,p)=1)

J°(ψk-1) : BU(n)^ → BU^ → BG(Sp^).

Sullivan’s amazing idea:


Interpret the Adams operations as “Galois 
symmetries” on profinitely completed homotopy 
types of classifying spaces.     
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Concretely: σ ∈ GalQ acts on π2(Pn(C)^)=Zp by 

multiplication with χ(σ) where χ denotes the 

cyclotomoic character. 

The complex projective n-space Pn is defined over Q 
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The absolute Galois group GalQ of Q acts on Pn and 
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Galois symmetries in topology:

Just seen: σ ∈ GalQ acts on π2(Pn(C)^) via χ(σ). 

This is a surprising fact, since the action of GalQ on 
P1(C) is “wildly discontinuous”. Only after completion 
we obtain a nice action.  

Key fact: The etale homotopy type tells us how to 
read off the action on finite covers.
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In the same way: There is a nice action of GalQ on 
P∞(C)^ (≈K(Zp,2)) and on BU(n)^:   

Concretely: σ ∈ GalQ acts on BU(n)^ such that 

σ(ci) =  χ(σ)-i⋅ci 

on cohomology, where ci is the ith Chern class. 



Galois symmetries in topology:

Choose σ ∈ GalQ such that χ(σ) = k-1 ∈ Zp×. Then 



Galois symmetries in topology:

Choose σ ∈ GalQ such that χ(σ) = k-1 ∈ Zp×. Then 

σ(ci) =  ki⋅ci. 

σ : BU(n)^ → BU(n)^ with



Galois symmetries in topology:

Key observation: This σ is an “unstable version” of 

the Adams operation ψk. (Use splitting principle and 

compute the effect on line bundles.)    

Choose σ ∈ GalQ such that χ(σ) = k-1 ∈ Zp×. Then 

σ(ci) =  ki⋅ci. 

σ : BU(n)^ → BU(n)^ with



Galois symmetries in topology:

Key observation: This σ is an “unstable version” of 

the Adams operation ψk. (Use splitting principle and 

compute the effect on line bundles.)    

Choose σ ∈ GalQ such that χ(σ) = k-1 ∈ Zp×. Then 

σ(ci) =  ki⋅ci. 

σ : BU(n)^ → BU(n)^ with

This is very remarkable: Without completions, ψk 

is an endomorphism of BU and not BU(n).   



The conclusion of the proof:



The conclusion of the proof:
We conclude: the diagram   



The conclusion of the proof:

BU(n)^  →  BU(n)^

BU(n-1)^  →  BU(n-1)^

↓ ↓

σ=ψk

σ=ψk

i i

We conclude: the diagram   



The conclusion of the proof:

is homotopy commutative and cartesian.  
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The conclusion of the proof:

is homotopy commutative and cartesian.  

BU(n)^  →  BU(n)^

BU(n-1)^  →  BU(n-1)^

↓ ↓

σ=ψk

σ=ψk

i i

Thus, twisting by ψk does not change the 

corresponding spherical fibration. This completes the 
sketch of Sullivan’s proof of the Adams conjecture.   

We conclude: the diagram   
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Hopf: Z/2-cohomology yields obstructions to 
existence of sums-of-squares formulas over R. 

This relates sums-of-squares formulas over R to 
embedding problems of projective space in Euclidean 
space. 

Davis found improved results using BP-theory. 
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Sums of squares in positive characteristic:

Dugger and Isaksen: The topological methods of 
Davis can be transferred to positive characteristic. 

Etale realizations and BP-theory for pro-spaces: 
The topological obstructions do not depend on the  
field k (char k ≠ 2).  
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Is there an etale homotopy type for Voevodsky’s 
motivic spaces?

There are at least two constructions: 

• Isaksen’s extension of Friedlander’s etale type 

• Schmidt’s extension of Artin-Mazur’s etale type 
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Schmidt’s geometric etale realization:

A “motivic space over S” is a simplicial sheaf in the 
Nisnevich topology over SmS.

An “etale hypercovering” of a motivic space M is a 
“local trivial fibration” U• → M in “the” etale model 

structure of simplicial sheaves.

The etale homotopy type of M is the pro-object

πTriv/M → H

U• → π0(U•).|
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Schmidt’s geometric etale realization:

The functor ht only factors through A1-localization if 
we complete away from the residue characteristics.

This defines a functor 

ht: Hs,et(SmS) → pro-H.

But: in general, the map A1S → S does not induce an 

isomorphism of etale fundamental groups. 
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Isaksen’s “rigidified” etale realization:

Isaksen extends Friedlander’s etale topological type to 
motivic spaces. 

The etale type of simplicial presheaves on SmS is the 
formal extension of a colimit preserving functor of 
the etale type of schemes.  

Using a Z/l-model structure, the etale type becomes 
a left Quillen functor from motivic spaces to the pro-
category of simplicial sets.
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• Algebraic cycles and etale cobordism:

Let X be a smooth projective complex variety. 

Our goal: Understand all closed subvarieties of X, at 
least up to a suitable notion of equivalence.

Let Zp(X) be the free abelian group generated by 
codimension p irreducible closed subsets in X.  


Its elements are called “cycles”.

Denote CHp(X):=Zp(X)/∼rat for cycles modulo “rational 
equivalence”.
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The cycle map:

CHp(X) H2p(X;Z)
clH

Z⊂X

H2p(X;Z) denotes the singular cohomology of the 
complex manifold Xcl associated to X,

[Zsm]fund

and [Zsm]fund denotes the fundamental class of a 
desingularization Zsm of Z.

In the 1990’s Totaro showed that clH factors via 
a quotient of complex cobordism MU*(Xcl):



Totaro’s factorization:



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:

Z⊂X



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:

Z⊂X [Zsm]H-fund. class



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:

Z⊂X

[Zsm]MU-fund. class

[Zsm]H-fund. class



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:

Z⊂X

[Zsm]MU-fund. class

[Zsm]H-fund. class



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:

Z⊂X

[Zsm]MU-fund. class

[Zsm]H-fund. class



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:

Z⊂X

[Zsm]MU-fund. class

MU2p(X)⊗MU*Z

clMU ϑ
[Zsm]H-fund. class



CHp(X) H2p(X;Z)
clH

Totaro’s factorization:

Z⊂X

[Zsm]MU-fund. class

MU2p(X)⊗MU*Z

clMU ϑ
[Zsm]H-fund. class

This is diagram commutes.
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ϑclMU
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Consequences:

• A topological obstruction on the image of clH:


image of clH is contained in image of ϑ.


In particular, all odd degree cohomology operations 
must vanish on the image of clH.
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Consequences:

• A topological obstruction on the image of clH:


image of clH is contained in image of ϑ.


In particular, all odd degree cohomology operations 
must vanish on the image of clH.
• More importantly: We can study the kernel of 
clH by finding elements in the kernel of ϑ that are 
in the image of clMU; good candidates are 
polynomials in Chern classes. 


Totaro used this method to find important new 
examples of elements in the Griffiths group.

CHp(X) H2p(X;Z)

MU2p(X)⊗MU*Z

ϑclMU

clH
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Algebraic cycles and etale cobordism:

Now let X be a smooth projective variety over a 
finite field k of characterstic p and l a prime ≠ p.

There is an etale version of the cycle map

CHi(X) H2i(X;Zl(i))
clHet

et

Z⊂X [Z]“etale fund. class”

Integral Tate “conjecture”: Is 

CHi(X)⊗Zl H2i(Xk;Zl(i))
clHet Gk-

surjective? The answer is “no” as we will explain now. 
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Etale cobordism (Q.):

Let MU be the “pro-l-completion” of MU.^

For a variety X over an alg. closed field we define 
the l-adic etale cobordism of X to be 

^M̂Un (X) := HomSH(∑∞(Xet), ∑nMU)^et

where SH is the stable l-adic homotopy category 
of profinite spectra. 

^

^
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Z⊂X

[Z]etale MU-fund. class

[Z]etale H-fund. class

CHi(X) H2i(X;Zl)
clHet

et

MU2i(X)⊗MU*Zl

clMUet ϑet

et
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Note: The construction of clMUet uses that there are 
“tubular neighborhoods” in etale homotopy.

X smooth projective 
over k=k, l ≠ char k.-
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In particular, all odd degree cohomology operations 
must vanish on the image of clHet.
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• A topological obstruction on the image of clHet:


image of clHet is contained in image of ϑet.


In particular, all odd degree cohomology operations 
must vanish on the image of clHet.

CHi(X) H2i(X;Zl)

MU2i(X)⊗MU*Zl

ϑetclMU

clHet

^ et ^

et

• Cycles of Atiyah and Hirzebruch provide counter-
examples to the integral version of the Tate 
conjecture for varieties over finite fields.  
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Let X be a connected smooth projective variety 
over a field k. Let X(k) be the set of rational points.

The functoriality of the etale homotopy type gives 
a natural map 

X(k) → Hom  (ket,Xet) 
(k → X) → (ket → Xet)|

Hket^

where Hket is a suitable homotopy category of 
“profinite spaces” over ket. 

^

The ideas in this final section have been developed 
by Friedlander, Pal, Harpz-Schlank, Q., Wickelgren 
and others.
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The etale homotopy type ket is equivalent to the 
classifying space BGk of the absolute Galois group 
Gk of k. 

This shows there is a natural map 

X(k) → Hom  (BGk,Xet).HBGk^

We interpret this set   as the set π0((Xet)hGk) of 
connected components of the “continuous homotopy 
fixed points of Xet”.
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Note: Different authors use different ways to get 
the set π0((Xet)hGk).  

One may think of this set as a “homotopical 
approximation to X(k)”.   

Pal and Harpaz-Schlank use the map 
X(k) → π0((Xet)hGk) 

to reinterpret obstructions to the existence of 
rational points in terms of etale homotopy theory.
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Rational points and homotopy fixed points:

For X a connected smooth projective curve of 
genus ≥2 over a number field, this question is 
equivalent to Grothendieck’s “section conjecture”.   

The hope: Homotopy methods give us a chance to 
understand the set π0((Xet)hGk) and the above map. 
But so far, we don’t know if this works.

Fundamental question: Is the map 

X(k) → Hom  (BGk,Xet) = π0((Xet)hGk)HBGk^ surjective?



Thank you!


