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Our selection of applications:

e Comparisons
e Friedlanders etale K-theory
e Sullivans Galois symmetries in topology

e Dugger-Isakens Sums of squares formulas

e Etale realizations of motivic spaces

e Algebraic cycles and etale cobordism

e Rational points and homotopy fixed points

For more applications see Friedlanders great book.
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Comparison theorems:

For X connected and geometrically unibranch:

m(Xa)™ = m(Xet) as profinite groups.

If X is geometrically unibranch and X is simply
connected:

(X)) = mn(Xet) for all n.
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Serres example revisited:

Let X be connected scheme over a field k of
charactersitic zero. Let X; and X, be the schemes
over C obtained via two different embeddings of

K info C.

Then after profinite completion there is an
Isomorphism in pro-H:

xl,cl ~ XZ,cI-

Thus the possible difference of the homotopy
types of Xic and Xz vanishes after completion.

To prove this we use efale homotopy theory.
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Comparison of characteristics:

Let R be a discretfe valuation ring with separably
algebraically closed residue field k.

Let X be a smooth proper scheme over R with
connected fibers Xo and X..

There Is a canonical isomorphism in pro-H

Xiet ® Xoet

where ~ denotes completion away from char k.
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e Friedlanders etale K-theory:
Let T be a CW-complex and C(m) be the cofiber

of the multiplication by m map on the circle

§t15 SV c(m).

The “complex K-theory” of T with Z/m-coefficients
can be defined as

K(T;Z/m) = Homy (C(m) A T, BU) and
KY(T;Zz/m) = Homy (St A C(m) A T, BU).

where BU is the infinite complex Grassmannian.
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Friedlanders etale K-theory:

If Y is a pro-space, its (complex) K-theory is defined
by
KO(Y;Z/m) = Hompro-n (C(m) A Y, #BU) and
K}Y;Z/m) = Hompro-n (ST A C(m) A 'Y, #BU).

where #BU = {cosk, BU}, € pro-H.

If X is a scheme of finite type over a complete
discrete valuation ring with separably closed
residue field, Friedlander defines the

"etale K-theory of X” to be the K-theory of X.t.
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Friedlanders etale K-theory:
There is an Atiyah-Hirzebruch spectral sequence

Ez = HY, (X;Z2/m) = K*.(X;Z/m).

If X is a complex variety, then

K%+ (X;Z/m) = K*(Xc1;Z/m).
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Galois action on etale K-theory:

Let X be a variety over a field k with absolute
Galois group Gk=Gal(k/k).

There is a natural action by Gk on

K%, (XxKk;Z/m).

Dwyer and Friedlander interpreted important
arithmetic questions in terms of this Galois action
on etale K-theory.
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Algebraic vs etfale K-theory:

After the first construction by Friedlander there
were more sophisticated definitions of etfale K-
theory by Friedlander, Dwyer-Friedlander and
Thomason.

They all come equipped with natural maps

Kaig(X:Z/1") = Kot(X;Z/1")

where | is a prime invertible on X.
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Algebraic vs etfale K-theory:

There is a "Bott element” 5 in Kuq Whose image in

Ket 1S Invertible.

Thomason: If X is a smooth quasi-projective variety
over a field of characteristic # | of finite mod-I
etale cohomological dimension, then

Kas(X;Z/IM[B 1] — K&'(X;Z/I")

IS an isomorphism.
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Algebraic vs etfale K-theory:
Without inverting B in Kqg there is the
“Quillen-Lichtenbaum conjecture”:

If X is a smooth variety over a field and n is
invertible in k, then the natural map

KM9(x;z/n) — K'(X:2/n)

is an isomorphism for i-1 > mod-n etale
cohomological dimension of X.

Note: The “"Quillen-Lichtenbaum conjecture” follows
from the "Bloch-Kato conjecture”.
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e Sullivan and Galois symmeftries in topology:

Let us have a second look at the (complex version
of the) Adams conjecture:

Let BU(n) be the Grassmannian of complex n-planes,
BU be the infinite complex Grassmannian.

Let BG be the classifying space of (stable) spherical
fibrations.
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Sullivan and Galois symmetries in topology:

Adams: For all k, the map
J-(1*-1) : BU(n) = BU — BG[1/K]

IS null-homotopic, i.e., homotopic to a constant map.
First step: As in Lecture 1, it suffices to consider
the p-completed maps (for each p with (k,p)=1)

J-(*-1) : BU(n)" — BU" — BG(S,").

Sullivans amazing idea:
Interpret the Adams operations as “Galois

symmetries” on profinitely completed homotopy
types of classifying spaces.
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The complex projective n-space P" is defined over Q

and we know .
P"(C)" =~ Ph.

The absolute Galois group Galg of Q acts on P! and
this defines an action of Galg on P"(C)".

Concretely: 0 € Galq acts on m2(P"(C)")=Z, by
multiplication with x (0) where X denotes the

cyclotomoic character.
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Galois symmetries in topology:
Just seen: 0 € Galg acts on m2(P"(C)") via x(0).
This is a surprising fact, since the action of Galq on

P}(C) is “wildly discontinuous”. Only after completion
we obtain a nice action.

Key fact: The etale homotopy type tells us how to
read off the action on finite covers.
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Galois symmetries in topology:

In the same way: There is a nice action of Galq on
P2(C)" (=K(Zp,2)) and on BU(n)":

Concretely: 0 € Galq acts on BU(n)” such that
O (ci) = sl g )" c

on cohomology, where c¢; is the ith Chern class.
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Galois symmetries in topology:
Choose 0 € Galq such that x(0) = k! € Zyx. Then
o : BU(n)” — BU(n)" with
glc)'= K'eg.
Key observation: This 0 is an “unstable version” of
the Adams operation ¥ *. (Use splitting principle and
compute the effect on line bundles.)

This is very remarkable: Without completions, ¥ %

is an endomorphism of BU and not BU(n).
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BU(M)" =, BU()’

IS homotopy commutative and cartesian.



The conclusion of the proof:
We conclude: the diagram

BU(n-1)> =L glitnT)
i\L \Li
BU(M)" =, BU()’

IS homotopy commutative and cartesian.

Thus, twisting by ¥ * does not change the

corresponding spherical fibration. This completes the
sketch of Sullivans proof of the Adams conjecture.
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® Sums of squares:

Let k be a field. A "sums-of-squares formula” of
type [r,s,n] is an identity of the form

(X2 ¥ i X2l + o+ Y8 = 210 o 2

where each zjis a bilinear expression in the xs and
v's with coefficients in k.

For k=R such an identity corresponds to an
"axial map”

RP™! x RPs! — RPN
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Sums of squares:

This relates sums-of-squares formulas over R to

embedding problems of projective space in Euclidean
space.

Hopf: Z/2-cohomology vields obstructions to
existence of sums-of-squares formulas over R.

Davis found improved results using BP-theory.
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Sums of squares in positive characteristic:

Dugger and Isaksen: The topological methods of
Davis can be transferred to positive characteristic.

Etfale realizations and BP-theory for pro-spaces:

The topological obstructions do not depend on the
field k (char k # 2).
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e Etale realizations of motivic spaces:

Is there an etale homotopy type for Voevodsky's
motivic spaces?

There are at least two constructions:
e Schmidts extension of Artin-Mazurs etale type

o Isaksens extension of Friedlanders etale type
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Schmidts geometric etale realization:

A “motivic space over S” is a simplicial sheaf in the
Nisnevich topology over Sms.

An “etale hypercovering” of a motivic space M is a
"local trivial fibration” U« — M in “the” etale model

structure of simplicial sheaves.

The etale homotopy type of M is the pro-object
nirivim — H

Ue > 110(Us).
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Schmidts geometric etale realization:

This defines a functor

ht: Hs,ef(sms) T PrO-H.

But: in general, the map Al's — S does not induce an

isomorphism of etale fundamental groups.

The functor ht only factors through A'-localization if
we complete away from the residue characteristics.
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Isaksens “rigidified” etale realization:

Isaksen extends Friedlanders etale topological type to
motivic spaces.

The etale type of simplicial presheaves on Sms is the
formal extension of a colimit preserving functor of
the etale type of schemes.

Using a Z/l-model structure, the etale type becomes
a left Quillen functor from motivic spaces to the pro-
category of simplicial sets.
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e Algebraic cycles and etale cobordism:

Let X be a smooth projective complex variety.

Our goal: Understand all closed subvarieties of X, at
least up to a suitable notion of equivalence.

Let ZP(X) be the free abelian group generated by
codimension p irreducible closed subsets in X.
Its elements are called “cycles”.

Denote CHP(X):=ZP(X)/~rt for cycles modulo “rational
equivalence”.
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The cycle map:

CHP(X) > HZP(X;Z)

ZCcX » [Zsm]Fund

HP(X;Z) denotes the singular cohomology of the
complex manifold X associated to X,

and [Zsmlfund denotes the fundamental class of a
desingularization Zs, of Z.

In the 19905 Totaro showed that cly factors via
a quotient of complex cobordism MU*(X.):
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Totaros factorization:

cly
CHP(X) = WP

ZcX [ Z < lhfune s
clmu 9-/

MU?P(X)®mu*Z

[Zsm]MU-Fund. class

This is diagram commutes.



o
CHP(X) ", HE(X;Z)
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e A topological obstruction on the image of clu:
image of cly is contained in image of 9.

In particular, all odd degree cohomology operations
must vanish on the image of clu.



C||-|

CHP(X) > HZP(X;Z)
Consequences:
CIAN 9
MUP(X)®mu*Z

e A topological obstruction on the image of clu:
image of cly is contained in image of 9.

In particular, all odd degree cohomology operations
must vanish on the image of clu.

® More importantly: We can study the kernel of
cly by finding elements in the kernel of 5 that are

in the image of clmu; good candidates are
polynomials in Chern classes.

Totaro used this method to find important new
examples of elements in the Griffiths group.
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Algebraic cycles and etfale cobordism:

Now let X be a smooth projective variety over a
finite field k of characterstic p and | a prime # p.

There is an etale version of the cycle map

ClHe‘r
CH(X) - HA(XGZ(1))

Zec X g [Z]“e’rale fund. class”

Integral Tate “conjecture”: Is

; ClHe’r . G
CH'(X)®Z| > HZ'(XE;Z|(i)) :

surjective? The answer is "no” as we will explain now.
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Etale cobordism (Q.):

Let MU be the "pro-l-completion” of MU.

For a variety X over an alg. closed field we define
the |-adic etale cobordism of X to be

MUZL(X) := Homsii(32(Xet), 3"MU)

where SH is the stable |-adic homotopy category
of profinite spectra.



An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.



An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.

ClHe’r

CH(X) > HZ(X;Z\)




An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.

ClHe’r

CH(X) > HZ(X;Z\)

CIMX Ae’r

M\Uez,ir(X)C@,\/'\\u*Z|




An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.

ClHe’r

CH(X) > HZ(X;Z\)

ZCX
ClMUe’r 9-e1_

M\Uez,ir(X)C@,\/'\\u*Z|




An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.

: ClHe’r :
CHI(X) - HE(X:Z)

ZCX
ClMUe’r 9-61_

MUQ(X)@,\/I\\L)*Z|

| Zletale MucRind. ‘class



An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.

: ClHe’r :
CHI(X) - HE(X:Z)

ZCX
ClMUe’r 9-61_

MUQ(X)@,\/I\\L)*Z|

| Zletale MucRind. ‘class



An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.

: ClHe’r ;
CH'(X) . X2

ZcX [Z]e’rale H-fund. class
Clmuet 9'31-

MUQ(X)@,\/I\\L)*Z|

| Zletale MucRind. ‘class
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over k=K, | # char K.
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An |-adic factorization (Q.): X smooth projective
over k=K, | # char K.

. ClHe’r .
CH(X) r L )
ZcX [Z]e’rale H-fund. class
ClMUe’r 9'31-
M\Uezjr(x)@v'\‘u*zl /

[Z]e’rale MU-fund. class

Note: The construction of clmuet uses that there are
"tubular neighborhoods” in etale homotopy.



Consequences:
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Consequences:
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In particular, all odd degree cohomology operations
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. of i .
CHi(X) e, HA(X:Z)

Consequences:
CII\N 9’@1‘

MAUSKX)@)M‘U*Z[

e A topological obstruction on the image of cClyet:
image of cluet is contained in image of Je:.

In particular, all odd degree cohomology operations
must vanish on the image of Cluet.

e Cycles of Atiyah and Hirzebruch provide counter-
examples to the integral version of the Tate
conjecture for varieties over finite fields.
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The ideas in this final section have been developed
by Friedlander, Pal, Harpz-Schlank, Q., Wickelgren
and others.

Let X be a connected smooth projective variety
over a field k. Let X(k) be the set of rational points.

The functoriality of the etale homotopy type gives
a natural map

X(k) = Hom~ (Ket,Xet)
er’r

where Hket is a suitable homotopy category of
"profinite spaces” over Ke:.
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The etale homotopy type Ket is equivalent to the
classifying space BGk of the absolute Galois group
Gk of K.

This shows there is a natural map

X(k) — HOmI’_‘l(BGk,Xe’r).
BGk

We interpret this set / as the set mo((Xet)"® ) of
connected components of the “continuous homotopy
fixed points of Xet".
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Note: Different authors use different ways to get
the set mo((Xet)" ).

One may think of this set as a "homotopical
approximation to X(k)".

Pal and Harpaz-Schlank use the map
X(k) = mo((Xet)"*)

to reinterpret obstructions to the existence of
rational points in terms of etale homotopy theory.
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Rational points and homotopy fixed points:

Fundamental question: Is the map

X(k) — Homlz_](BGk,Xef) = 1o((Xat)P®) surjective?
BGk

For X a connected smooth projective curve of
genus 22 over a number field, this question is
equivalent to Grothendieck's “"section conjecture”.

The hope: Homotopy methods give us a chance to
understand the set mo((Xet)"®) and the above map.
But so far, we dont know if this works.



Thank you!



