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Abstract. We construct Hodge filtered function spaces associated to infinite

loop spaces. For Brown-Peterson cohomology, we show that the corresponding
Hodge filtered spaces satisfy an analog of Wilson’s unstable splitting. As

a consequence, we obtain an analog of Quillen’s theorem for Hodge filtered

Brown-Peterson cohomology for complex manifolds.

1. Introduction

For a fixed prime number p, let BP ∗(−) denote Brown-Peterson cohomology and
let BP be the Ω-spectrum representing BP ∗(−) (see [1] and [14]). For an integer
n ≥ 0, let BP 〈n〉 be the Ω-spectrum representing the associated intermediate
cohomology theory studied by Wilson in [17]. These spectra are connected via
canonical maps gn : BP → BP 〈n〉 and fn : BP 〈n〉 → BP 〈n − 1〉. The coefficient
rings of BP and BP 〈n〉 are isomorphic to polynomial algebras

BP ∗ = Z(p)[v1, v2, . . .] and BP 〈n〉∗ = Z(p)[v1, . . . , vn]

where the generator vi has degree −2(pi − 1). The effect of gn on coefficients is to
send the generators vi with i ≥ n+ 1 to 0, and fn sends vn to 0.

Let BPk and BP 〈n〉k denote the kth spaces of the spectra BP and BP 〈n〉,
respectively. In [17], Wilson proved that, for k ≤ 2(pn + pn−1 + · · ·+ p+ 1), there
is a homotopy equivalence

(1) BPk
≈−→ BP 〈n〉k ×

∏
j>n

BP 〈j〉k+2(pj−1),

and the product cannot be broken down further. This result has many important
consequences. For example, it yields a proof of Quillen’s theorem that, for a finite
complex X, BP ∗(X) is generated as a BP ∗-module by elements of non-negative
degree ([17, Theorem 5.7]).

In [8], Hopkins and the author showed that, given any rationally even spec-
trum E, there is an associated Hodge filtered cohomology theory E∗D(∗)(−) for
complex manifolds represented by a presheaf of spectra ED. These Hodge filtered
cohomology theories are natural generalizations of analytic Deligne cohomology for
complex manifolds. In particular, there is a Hodge filtered BP -theory represented
by a presheaf of spectra BPD. The purpose of this paper is to show that Wilson’s
splitting (1) of the spaces BPk induces a splitting of the spaces, i.e. simplicial
presheaves, in the spectrum BPD.

It is important to note that the splitting (1) does not exist on the level of
spectra (see [2, p. 817]). Hence the first important step is to construct Hodge
filtered spaces associated to BP . The presheaf of spectra BPD is actually given
by a wedge sum of presheaves of spectra BPD(m), one summand for each integer
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m. For all integers m and k ≥ 0, we construct simplicial presheaves BPk(m)
on the Grothendieck site of complex manifolds together with weak equivalences
σk : BPk(m)→ ΩBPk+1(m) such that the presheaf of spectra {BPk(m)}k built by
the BPk(m) and σk is equivalent to BPD(m). In fact, we will construct spaces
Ek(m) for any connective rationally even spectrum E. We call Ek(m) the mth
Hodge filtered function space associated to Ek. For the reader who is familiar with
differential cohomology theories, we remark that these constructions are similar to
how Hopkins-Singer define differential function spaces for smooth manifolds in [9].

The second important step is to show that a map Ek → Fn between spaces
of rationally even spectra E and F induces a map Ek(m) → Fn(m) of simplicial
presheaves. The analog of Wilson’s splitting will then be a natural consequence of
the constructions.

Our main results are the following.

Theorem 1.1. Let m and n be integers with n ≥ 0. For every k ≤ 2(pn + · · ·+ 1),
there is a weak equivalence of simplicial presheaves

(2) BPk(m)
≈−→ BP 〈n〉k(m)×

∏
j>n

BP 〈j〉k+2(pj−1)(m).

It follows, in particular, that, for every complex manifold M , the natural map

BP kD(m)(M)→ BP 〈n〉kD(m)(M)

is surjective for k ≤ 2(pn + · · ·+ 1).
Furthermore, let Ik〈n〉(m) be the subgroup of elements in BP kD(m)(M) which

can be written as a finite sum

u =
∑
i>n

vi,m(ui)

with ui ∈ BP
k+2(pi−1)
D (m)(M), vi ∈ BP−2(pi−1), and vi,m the induced map

BP ∗D(m)(M) → BP
∗+2(pi−1)
D (m)(M). Then Theorem 1.1 has the the following

consequence.

Theorem 1.2. Let M be a complex manifold and m and n ≥ 0 be integers. The
natural induced homomorphism

BP kD(m)(M)/Ik〈n〉(m)→ BP 〈n〉kD(m)(M)

is an isomorphism for k ≤ 2(pn + · · ·+ 1) and injective for k ≤ 2(pn + · · ·+ 1) + 2.

For n = 0, we have BP 〈0〉∗ = Z(p) and BP 〈0〉kD(m)(M) = Hk
D(M ;Z(p)(m)),

where Hk
D(M ;Z(p)(m)) denotes the kth analytic Deligne cohomology of M with

coefficients in Z(p)(m). Hence Theorem 1.2 has the following special case which is
an analog of [15, Theorem 2.2] for Deligne cohomology.

Corollary 1.3. Let M be a complex manifold and m an integer. The natural map

BP kD(m)(M)/Ik〈0〉(m)→ Hk
D(M ;Z(p)(m))

is an isomorphism for k ≤ 2 and injective for k ≤ 4. In particular, the quotient
BP kD(m)(M)/Ik〈0〉(m) vanishes for negative k.

The fact that BP kD(m)(M)/Ik〈0〉(m) vanishes in negative degrees could also be
reformulated as the following analog of Quillen’s theorem.
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Theorem 1.4. Let M be a complex manifold and m an integer. Then BP ∗D(m)(M)
is generated as a BP ∗-module by elements of non-negative degree.

In [15], Totaro showed that Brown-Peterson cohomology and the map in Corol-
lary 1.3 (for BP and H instead of BPD and HD) are very useful tools for the
study of the cycle maps for smooth projective complex algebraic varieties from
Chow groups to singular cohomology and Deligne cohomology, respectively. In [8]
and [13], Hopkins and the author used Hodge filtered complex cobordism to study
cycles in algebraic cobordism. We are optimistic that Theorem 1.2 will play an
important role in the study of various related cycle maps in the future.

The author would like to thank Mike Hopkins for very helpful conversations and
suggestions.

2. Hodge filtered function spaces

We start with a brief recollection of Eilenberg-MacLane spaces, the singular
functor and Hodge filtered forms in the setting of simplicial presheaves. Then we
will construct Hodge filtered function spaces.

2.1. Simplicial presheaves. Let T be the category ManC of complex manifolds
and holomorphic maps. The Grothendieck topology defined by open coverings turns
T into an essentially small site with enough points. We denote by sPre = sPre(T)
the category of simplicial presheaves on T, i.e., contravariant functors from T to the
category sS of simplicial sets. Objects in sPre will also be called spaces. Recall that
sending an object M of T to the presheaf of sets it represents defines a fully faithful
embedding of T into the category of presheaves of sets on T. Since any presheaf of
sets defines an object in sPre of simplicial dimension zero, we can embed T into
sPre. On the other hand, every simplicial set K defines a simplicial presheaf by
sending every object to K. By abuse of notation, we denote this simplicial presheaf
by K as well.

We will consider sPre with the local projective model structure (see e.g. [5], [6]).
We will not discuss the specific properties of this model structure, but just recall
that a map F → G in sPre is called a (local) weak equivalence if the induced map
of stalks Fx → Gx is a weak equivalence in sS for every point x in T. Furthermore,
a map F → G is called an objectwise fibration if F(X) → G(X) is a fibration in
sS for every X ∈ T. A map is a local projective fibration if it is an objectwise
fibration and satisfies descent for all hypercovers in T (see [6, Corollary 7.1]). We
denote the corresponding homotopy category of sPre by hosPre.

A natural way to send a CW -complex into sPre is the singular functor which is
defined as follows. Let ∆n be the standard topological n-simplex

∆n = {(t0, . . . , tn) ∈ Rn+1|0 ≤ tj ≤ 1,
∑

tj = 1}.

For topological spaces Y and Z, the singular function complex Sing∗(Z, Y ) is the
simplicial set whose n-simplices are continuous maps

f : Z ×∆n → Y.

We denote the simplicial presheaf

M 7→ Sing∗(M,Y ) =: Sing∗Y (M)
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on ManC by Sing∗Y . For any CW -complex Y , the simplicial presheaf Sing∗Y is
objectwise fibrant and satisfies descent for hypercovers in ManC by [7, Theorem
1.3] (see also [8, Lemma 2.3]). By [6, Corollary 7.1], this implies that Sing∗Y is a
fibrant object in the local projective model structure on sPre.

Furthermore, for a simplicial set K, let |K| be its geometric realization in the
category of CW -complexes. By [8, Proposition 2.4], the natural map

K → Sing∗|K|
is a weak equivalence of simplicial presheaves. Hence we can use the assignment
K 7→ Sing∗|K| as a natural fibrant replacement in sPre for simplicial presheaves
coming from simplicial sets.

An important class of simplicial presheaves are Eilenberg-MacLane spaces. Let
C∗ be a cochain complex of presheaves of abelian groups on T. For any integer n,
we denote by C∗[n] the cochain complex given in degree q by Cq[n] := Cq+n. The
differential on C∗[n] is the one of C∗ multiplied by (−1)n. The hypercohomology
H∗(M ; C∗) of an object M of T with coefficients in C∗ is the graded group of
morphisms Hom(ZM , aC∗) in the derived category of cochain complexes of sheaves
on T, where aC∗ denotes the complex of associated sheaves of C∗. We will denote
by K(C∗, n) the Eilenberg-MacLane spaces, i.e., simplicial presheaf, associated to
C∗[−n]. The following result is a version of Verdier’s hypercovering theorem due to
Ken Brown.

Proposition 2.1. ([3, Theorem 2]) Let C∗ be a cochain complex of presheaves of
abelian groups on T. Then for any integer n and any object M of T, one has a
canonical isomorphism

Hn(M ; C∗) ∼= HomhosPre(M,K(C∗, n)).

Example 2.2. Let ΩnM denote the sheaf of holomorphic n-forms on a complex
manifold M and let Ω∗ be the complex of presheaves on ManC that sends a complex
manifold M to the complex Ω∗M (M). The inclusion of complexes C ↪→ Ω∗ is a quasi-
isomorphism and induces a weak equivalence of simplicial presheaves

K(C, k)→ K(Ω∗, k).

This implies that there is a natural isomorphism

Hk(M ;C) ∼= HomhosPre(M,K(Ω∗, k))

for every k and M ∈ManC.

2.2. Hodge filtration on forms. For a complex manifold M , let Ω∗M again denote
the complex of sheaves of holomorphic forms on M . Let V∗ be an evenly graded
C-vector space such that each V2i is a finite dimensional complex vector space. For
an integer n, we denote by Hn(M ;V∗) the graded cohomology group

Hn(M ;V∗) :=
⊕
i

Hn+2i(M ;V2i)

where Hn+2i(M ;V2i) = Hn+2i(M ;C)⊗C V2i.
The groups Hn(M ;V∗) are equipped with a Hodge filtration which can be defined

as follows (see e.g. [16, Def. 8.2]). Let Ω∗M be the complex of sheaves of holomorphic

forms on M and let Ω∗≥pM be the subcomplex of forms of degree at least p. The
Hodge filtration on Hn(M ;C) can be defined by

F pHn(M ;C) := Im (Hn(M ; Ω∗≥pM )→ Hn(M ; Ω∗M ) = Hn(M ;C))
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where Hn(M ;−) denotes the nth hypercohomology.. If M is a compact Kähler

manifold, then F pHn(M ;C) is just Hn(M ; Ω∗≥pM ).
For a general complex manifold, we extend the Hodge filtration to the graded

groups Hn(M ;V∗) as follows. For integers m and n, let Fm+iHn+2i(M ;V2i) be the
(m+ i)th step in the Hodge filtration of Hn+2i(M ;V2i). We will write

FmHn(M ;V∗) :=
⊕
i

Fm+iHn+2i(M ;V2i)

for the graded Hodge filtered cohomology groups of M .
Let

Ω∗M → A∗M and Ω∗≥mM → FmA∗M
be resolutions by cohomologically trivial sheaves which are functorial in M . We
can choose these resolutions in such a way as to fit into a commutative diagram

Ω∗M

��

// · · · // Ω∗≥m−1
M

��

// Ω∗≥mM

��

// · · ·

A∗M
// · · · // Fm−1A∗M

// FmA∗M // · · ·

For example, we could use the Godemont resolution ([4, §3.2.3]). Let A∗ and FmA∗

be the associated presheaves of complexes on ManC defined by

A∗ : M 7→ A∗M (M) and FmA∗ : M 7→ FmA∗M (M).

Note that even though A∗ and FmA∗ are double complexes, we will only consider
their total complexes.

We denote by A∗(V2i)[−2i] the presheaf of forms with coefficients in V2i shifted
by degree 2i and we will write

A∗(V∗) :=
⊕
i

A∗(V2i)[−2i].

For an integer m, we define the complex of presheaves FmA∗(V∗) to be

(3) FmA∗(V∗)) :=
⊕
i

Fm+iA∗(V2i)[−2i].

For an integer n, let K(A∗(V∗), n) and K(FmA∗(V∗), n) denote the associated
Eilenberg-MacLane spaces. Note that (3) induces isomorphisms

K(A∗(V∗), n) ∼=
∨
i

K(A∗(V2i), n+ 2i)

K(FmA∗(V∗), n) ∼=
∨
i

K(Fm+iA∗(V2i), n+ 2i).

Recall that | · | denotes the geometric realization functor which sends simplicial
sets to CW -complexes. The simplicial presheaf Sing∗|K(V∗, n)| represents the func-
tor of cocycles with coefficients in V∗, i.e., for every M ∈ManC, there is a natural
isomorphism of abelian groups

Zn(M ;V∗) ∼= HomsPre(M,Sing∗|K(V∗, n)|),
where we write Zn(M ;V∗) := ⊕iZn+2i(M ;V2i) for the graded group of cocycles on
M . Since M is a representable presheaf, we have a natural bijection of sets

HomsPre(M,Sing∗|K(V∗, n)|) ∼= Sing0|K(V∗, n)|(M).
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Moreover, since M is a cofibrant object in the local projective model structure on
sPre, there are natural bijections

(4) HomhosPre(M, Sing∗|K(V∗, n)|) ∼= π0(Sing∗|K(V∗, n)|(M)) ∼= Hn(M ;V∗).
Since the canonical inclusion V∗ ↪→ A∗M (V∗) is a quasi-isomorphism of com-

plexes of sheaves for every M , it induces a weak equivalence of simplicial presheaves
K(V∗, n) → K(A∗(V∗), n). Together with (4), this implies that there are natural
bijections

HomhosPre(M,Sing∗|K(A∗(V∗), n)|) ∼= π0(Sing∗|K(A∗(V∗), n)|(M))
∼= Hn(A∗(M ;V∗))
∼= Hn(M ;V∗).

If M is a compact Kähler manifold, we even have natural bijections
(5)

HomhosPre(M,Sing∗|K(FmA∗(V∗), n)|) ∼= π0(Sing∗|K(FmA∗(V∗), n)|(M))
∼= Hn(FmA∗(M ;V∗))
∼= FmHn(M ;V∗).

The sequence of isomorphisms in (5) expresses that, at least for compact Kähler
manifolds, the simplicial presheaves Sing∗|K(FmA∗(V∗), n)|, for n ≥ 0, represent
Hodge filtered cohomology groups in hosPre. We remark that there is an analogous
result for smooth complex varieties (see [12]).

2.3. Hodge filtered function spaces. We will now define Hodge filtered function
spaces. The idea is similar to the way that differential function spaces were defined
for smooth manifolds in [9].

Let m and n be integers and V∗ an evenly graded complex vector space. Let Y
be a CW-complex and let ι ∈ Zn(Y ;V∗) by a cocycle on Y . A cocycle corresponds
to a map of CW-complexes

Y → |K(V∗, n)|
and induces a map of simplicial presheaves on ManC

Sing∗Y → Sing∗|K(V∗, n)|.
The canonical inclusion V∗ ↪→ A∗(V∗) induces a map K(V∗, n)→ K(A∗(V∗), n),

and we can form the following diagram of simplicial presheaves

(6) Sing∗Y

ι∗

��
Sing∗|K(FmA∗(V∗), n)| // Sing∗|K(A∗(V∗), n)|.

Definition 2.3. We define the Hodge filtered function space (Y (m), ι, n) to be the
homotopy pullback of (6) in sPre.

Remark 2.4. Note that (Y (m), ι, n) depends on ι only up to homotopy, i.e., if ι′ is
another cocycle which represents the same cohomology class as ι, then (Y (m), ι, n)
and (Y (m), ι′, n) are equivalent.

Remark 2.5. For Y = K(Z, n) and V∗ = C concentrated in degree 0, we recover
analytic Deligne cohomology for complex manifolds. Since this observation is one
of the key motivations for the construction of Hodge filtered function spaces, we
are now going to explain this fact in more detail.
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Recall that, for given integers m ≥ 0 and n ≥ 0, the nth Deligne cohomology group
Hn
D(M ;Z(m)) of a complex manifold M is defined as the nth hypercohomology of

the complex of sheaves

(7) 0→ Z ·(2πi)m−−−−−→ Ω0
M → Ω1

M → · · · → Ωm−1
M → 0

where Z is placed in degree 0 and the map from the locally constant sheaf Z to the
sheaf of homolorphic functions Ω0

M is the natural inclusion multiplied by (2πi)m (i
being a square root of −1). Complex (7) is equivalent to the homotopy pullback of
complexes of sheaves of the diagram

(8) Z

(2πi)m

��
Ω∗≥mM

// Ω∗M .

After replacing Ω∗M with the complex of presheaves A∗ and after applying the
Eilenberg-MacLane functor K(−, n) we obtain the diagram in sPre

(9) Sing∗K(Z, n)

Sing∗ι

��
Sing∗|K(FmA∗, n)| // Sing∗|K(A∗, n)|

where ι : K(Z, n) → K(A∗, n) is the map that is induced by the (2πi)m-multiple
of Z ↪→ Ω0 → A0. Since the Eilenberg-MacLane functor is an equivalence between
the category of presheaves of complexes of abelian groups and the category of
presheaves of simplicial abelian groups, there is an isomorphism between the nth
hypercohomology of the homotopy pullback of (8) and π0 of the homotopy pullback
of (9). In other words, the simplicial presheaf

K(Z, n)(m) := (K(Z, n)(m), ι, n)

(which is the homotopy pullback of (9)) represents analytic Deligne cohomology in
sPre, i.e., for every M ∈ManC, there is a natural isomorphism

Hn
D(M ;Z(m)) ∼= HomhosPre(M,K(Z, n)(m)).

2.4. An alternative definition. An equivalent way to construct (Y (m), ι, n) is
the following. For a complex manifold M , let Zn(M × ∆•;V∗) be the simplicial
abelian group whose group of k-simplices is given by C∞-n-cocycles on M × ∆k

with coefficients in V∗. We denote the corresponding simplicial presheaf

M 7→ Zn(M ×∆•;V∗)

on ManC by Zn(−×∆•;V∗). A cocycle ι determines a map of simplicial presheaves

Sing∗Y → Zn(−×∆•;V∗), f 7→ ι∗f,

given by taking the pullback along ι. Let I denote the map given by integration of
forms

I : Fm+iAn+2i(M ;V2i)→ Cn+2i(M ;V2i), η 7→ (σ 7→
∫

∆n+2i

σ∗η).
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We can form a diagram of simplicial presheaves

(10) Sing∗Y

ι∗

��
Sing∗|K(FmA∗(V∗), n)|

I
// Zn(−×∆•;V∗).

The map Sing∗K(V∗, n)(M)→ Zn(M ×∆•;V∗) given by pulling back a fundamen-
tal cocycle in Zn(K(V∗, n);V∗) is a simplicial homotopy equivalence (see e.g. [9,
Proposition A.12]). Hence the homotopy pullback of (6) is homotopy equivalent to
the homotopy pullback of (10).

For given m, n and ι, let us write Y (m) for the homotopy pullback of (10).
To make the construction more concrete, we describe the 0-simplices of Y (m)(M)
for a complex manifold M . Since one can calculate homotopy pullbacks in sPre
objectwise (see e.g. [13, Proposition 2.7]), we can assume that Y (m)(M) is the
homotopy pullback of the diagram of simplicial sets

Sing∗Y (M)

ι∗

��
Sing∗|K(FmA∗(V∗), n)|(M)

I
// Zn(M ×∆•;V∗).

A 0-simplex of Y (m)(M) is given by a triple

q : M → Y, η ∈ FmAn(M ;V∗)cl, h ∈ Cn−1(M ;V∗)

where q is a continuous map and η is a closed form such that δh = ι∗q−I(η), where
δ denotes the differential in C∗(M ;V∗).

3. Hodge filtered function spaces and spectra

Our main case of interest is the construction of spaces in the Hodge filtered
spectra defined in [8, §4]. We will first define such Hodge filtered function spaces
and then explain how maps between loop spaces induce maps between Hodge filtered
function spaces.

3.1. Spaces in Hodge filtered Ω-spectra. Let m be an integer. Let E be a
connective Ω-spectrum built by CW -complexes. We assume that E is rationally
even, i.e., π∗E ⊗ Q is concentrated in even degrees, and finitely generated in each
degree. For example, E could be either BP or BP 〈n〉.

Let Ek be the kth space of E. By our assumption on E, we have π∗+kEk = π∗E.
We set π∗EC = π∗E ⊗Z C and let

µEk
: π∗+kEk → π∗EC

be the graded homomorphism defined in degree 2j by

π2j+kEk → π2jE ⊗Z C, x 7→ x⊗ (2πi)j+m.

The homomorphism µEk
corresponds to a cohomology class cEk

∈ Hk(Ek;π∗EC)
under the Hurewicz isomorphism

Hk(Ek;π∗EC) ∼= Hom(π∗+kEk, π∗EC).
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Let

(11) ιEk
: Ek → |K(π∗EC, k)|

be the map which represents a cocycle in Zk(Ek;π∗EC) whose cohomology class is
cEk

. The choice of such a map is unique up to homotopy.

Definition 3.1. We call ιEk
an m-twisted fundamental cocycle of Ek.

We will also need the following variation of such fundamental cocycles. The
inclusion π∗EC ↪→ A∗(π∗EC) induces a map of simplicial presheaves

K(π∗EC, k)→ K(A∗(π∗EC), k).

Composition with (11) defines a map in sPre

ιEk
: Ek → |K(A∗(π∗EC), k)|

which we also denote by ιEk
.

We can form the diagram in sPre

(12) Sing∗Ek

ιEk

��
Sing∗|K(FmA∗(π∗EC), k)| // Sing∗|K(A∗(π∗EC), k)|.

We write (Ek(m), ιEk
) for the homotopy pullback of (12) in sPre. Note that a

different choice ι′Ek
of an m-twisted fundamental cocycle of E yields a homotopy

equivalent simplicial presheaf (Ek(m), ι′Ek
). Therefore, we will usually drop ιEk

from the notation and write Ek(m) for (Ek(m), ιEk
).

Definition 3.2. We call Ek(m) the mth Hodge filtered function space of Ek.

The relationship between the spaces Ek(m) and the spectra ED(m) defined in
[8, §4] is summarized in the following theorem.

Theorem 3.3. For each m, we can choose the cocycles ιEk
such that {Ek(m)}k

forms an Ω-spectrum in the category of presheaves of spectra which is equivalent to
the spectrum ED(m) of [8, §4]. For each k, the simplicial presheaf Ek(m) represents
Hodge filtered E-cohomology groups of degree k and twist m in hosPre, i.e., for
any M ∈ManC, there is a natural isomorphism

HomhosPre(M,Ek(m)) ∼= EkD(m)(M).

Proof. First, we need to show that we can choose the cocycles ιEk
such that we

obtain structure maps
σk(m) : Ek(m)→ ΩEk+1(m)

which are weak equivalences for every k.
Let

µE : π∗E → π∗EC

be the graded homomorphism defined by multiplication by (2πi)j+m in degree 2j.
The homomorphism µE corresponds to a cohomology class cE ∈ H0(E;π∗EC) under
the Hurewicz isomorphism

H0(E;π∗EC) ∼= Hom(π∗E, π∗EC).

The class cE in H0(E;π∗EC) can be represented by a map of spectra

ιE : E → H(π∗EC)
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where H(π∗EC) denotes the Eilenberg-MacLane spectrum associated to the graded
C-vector space π∗EC. This map consists of a family of maps

ιEk
: Ek → |K(π∗EC, k)|

which are compatible with the structure maps of the spectra E and H(π∗EC), at
least up to homotopy. More precisely, if σk : Ek → ΩEk+1 denotes the kth structure
map of E, these cocycles induce homotopy commutative diagrams of the form

Ek
ιEk //

σk

��

|K(π∗EC, k)|

��
ΩEk+1

ΩιEk+1// Ω|K(π∗EC, k + 1)|

where the right hand vertical map is the kth structure map of H(π∗EC).
Hence, since σk and ιEk

are compatible, we obtain a homotopy commutative
diagram

Sing∗Ek

σk

��

ιEk // Sing∗|K(A∗(π∗EC), k)|

��

Sing∗|K(FmA∗(π∗EC), k)|oo

��
Sing∗ΩEk+1

ΩιEk+1

// Sing∗Ω|K(A∗(π∗EC), k + 1)| Sing∗Ω|K(FmA∗(π∗EC), k + 1)|.oo

Since E is an Ω-spectrum, the vertical maps are weak equivalences in sPre.
Hence the map from the homotopy pullback of the upper row to the homotopy
pullback of the lower row, which is induced by the vertical maps, is a weak equiv-
alence in sPre. Since taking loop spaces commutes with the singular functor and
with taking homotopy pullbacks, this shows that the diagram above induces a map
of simplicial presheaves

σk(m) : Ek(m)→ ΩEk+1(m)

which is a weak equivalence in sPre. This proves that the family of simplicial
presheaves Ek(m) together with the maps σk(m), indexed by k, forms a presheaf
of spectra which we denote by E(m). It follows from the construction of E(m)
and the presheaf of spectra ED(m) in [8, §4.1] that there is a canonical map of
presheaves of spectra

(13) E(m)→ ED(m).

Now let M be a complex manifold. It follows from the definition of Ek(m) as
a homotopy pullback that the group HomhosPre(M,Ek(m)) sits in a long exact
sequence analog to the one of [8, Proposition 4.5]. Moreover, the map (13) induces
a natural morphism of long exact sequences
(14)

· · · // Ek−1
C (M) //

��

HomhosPre(M,Ek(m)) //

��

Ek(M)⊕Hk(M ;FmA∗(π∗EC)) //

��

· · ·

· · · // Ek−1
C (M) // EkD(m)(M) // Ek(M)⊕Hk(M ; Ω∗≥m(π∗EC)) // · · ·

Since the outer vertical maps are isomorphisms, the induced map

HomhosPre(M,Ek(m))
∼=−→ EkD(m)(M)
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is an isomorphism as well. Since we can assume that ED(m) is an Ω-spectrum,
this also implies that the map (13) is an objectwise and hence also stalkwise weak
equivalence of spectra. �

Remark 3.4. In order to indicate how the groups EkD(m)(M) look like, let us
assume k = 2m and that M is a compact Kähler manifold. In this case, one can
show using Hodge theory as in [8, §4.3] that the (upper) long exact sequence in
(14) can be split into short exact sequences of the form

0→ E2m−1(M)⊗Z R/Z→ E2m
D (m)(M)→ Hdg2m

E (M)→ 0

where Hdg2m
E (M) is the subgroup of E2m(M) that is defined by the cartesian square

Hdg2m
E (M)

��

// E2m(M)

��
FmH2m(M ;π∗EC) // H2m(M ;π∗EC).

3.2. Induced maps and products. The construction of Hodge filtered function
spaces is functorial in the following way.

Proposition 3.5. Let m be an integer. Let E and F be connective rationally even
Ω-spectra and f : Ek → Fn be a map from the kth space of E to the nth space of F .

a) Then f induces a map of Hodge filtered function spaces

f(m) : Ek(m)→ Fn(m).

b) If f is a weak equivalence, then f(m) is a weak equivalence of simplicial
presheaves.

Proof. a) We set π∗EC := π∗E ⊗Z C and π∗FC := π∗F ⊗Z C. We define graded ho-
momorphisms µEk

: π∗+kEk → π∗EC and µFn
: π∗+nFn → π∗FC by multiplication

by (2πi)j+m for ∗ = 2j.
The given map f induces graded homomorphisms

π∗Ek → π∗Fn and π∗E → π∗+(k−n)F.

On the level of Eilenberg-MacLane spaces, f induces a map

fK : K(π∗EC, k)→ K(π∗FC, n).

Now let cEk
be the cohomology class in Hk(Ek;π∗EC) corresponding to µEk

under the Hurewicz isomorphism, and let

ιEk
: Ek → |K(π∗EC, k)|

be a cocycle in Zk(Ek;π∗EC) whose cohomology class is cEk
. Similarly, let cFn

be
the cohomology class in Hn(Fn;π∗FC) corresponding to µFn under the Hurewicz
isomorphism, and let

ιFn
: Fn → |K(π∗FC, n)|

be a cocycle in Zn(Fn;π∗FC) with cohomology class cFn
. The images of cEk

and
cFn in Hn(Ek;π∗FC) under the maps

Hn(Fn;π∗FC)

f∗

��
Hk(Ek;π∗EC)

fK∗

// Hn(Ek;π∗FC)
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induced by f and fK agree, since they are both equal to the class in Hn(Ek;π∗FC)
which corresponds to the composed graded homomorphism π∗+kEk → π∗+(k−n)FC
under Hn(Ek;π∗FC) ∼= Hom(π∗+kEk, π∗+(k−n)FC). This implies that the diagram

(15) Ek
f //

ιEk

��

Fn

ιFn

��
|K(π∗EC, k)|

fK

// |K(π∗FC, n)|

commutes up to homotopy.
Hence the map f induces a homotopy commutative diagram of simplicial presheaves

(16) Sing∗Ek

Sing∗f

��

ιEk // Sing∗|K(A∗(π∗EC), k)|

Sing∗fK

��

Sing∗|K(FmA∗(π∗EC), k)|oo

Sing∗fK

��
Sing∗Fn ιFn

// Sing∗|K(A∗(π∗FC), n)| Sing∗|K(FmA∗(π∗FC), n)|.oo

Taking the homotopy pullback of the top row, which is Ek(m), and the homotopy
pullback of the bottom row, which is Fn(m), we obtain that f induces a map of
simplicial presheaves

f(m) : Ek(m)→ Fn(m).

b) If f : Ek → Fn is a weak equivalence, then the vertical maps in diagram (16)
are all weak equivalences. Hence the induced map of homotopy pullbacks f(m) is
also a weak equivalence. �

Remark 3.6. Let f : Ek → Fn be a map as in Proposition 3.5 and let M be a
complex manifold M . One should note that even though f(m) may depend on the
chosen cocycles, the induced map on Hodge filtered cohomology groups

f(m)∗ : HomhosPre(M,Ek(m))→ HomhosPre(M,Fn(m))

only depends on the homotopy type of f . More precisely, let ι′Ek
and ι′Fn

be a
another choice of cocycles also representing the cohomology classes cEk

and cFn
,

respectively, and let f ′ be a map homotopic to f . This data fits into a homotopy
commutative diagram

(17) Ek
f //

ιEk

��

Fn

ιFn

��
Ek
ww f ′ //

ι′Ek

��

Fn
ww

ι′Fn

��
|K(π∗EC, k)|

fK // |K(π∗FC, n)|

|K(π∗EC, k)|
f ′K //

ww
|K(π∗FC, n)|

ww

in which the maps from the back to the front square are homotopy equivalences.
This diagram then induces up to coherent homotopy a map of diagrams from (16)
to the corresponding diagram built using ι′Ek

, ι′Fn
and f ′. Hence (17) induces a
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commutative diagram

HomhosPre(M,Ek(m))
f(m)∗ //

∼=
��

HomhosPre(M,Fn(m))

∼=
��

HomhosPre(M,Ek(m))
f ′(m)∗

// HomhosPre(M,Fn(m))

in which the vertical maps are isomorphisms induced by the homotopies ιEk
∼ ι′Ek

and ιFn
∼ ι′Fn

Now we show that Hodge filtered function spaces behave well under taking prod-
ucts. Let E and F be connective rationally even Ω-spectra, and let Ek and Fn be
their kth and nth spaces, respectively. We can choose, independently, cocycles ιEk

and ιFn
which represent the homomorphisms µE and µF as in the beginning of the

proof of Proposition 3.5. Since we have

π∗(E × F ) = π∗E ⊕ π∗F,
there is a canonical homotopy equivalence

|K(π∗(E × F )C, k + n)| ≈−→ |K(π∗EC, k)| × |K(π∗FC, n)|.
Hence we can use ιEk

and ιFn to obtain a cocycle

ιEk×Fn
: Ek × Fn → |K(A∗(π∗(E × F )C), k + n)|.

We can then form the diagram in sPre

Sing∗(Ek × Fn)

ιEk×Fn

��
Sing∗|K(FmA∗(π∗(E × F )C), k + n)| // Sing∗|K(A∗(π∗(E × F )C), k + n)|

The homotopy pullback of this diagram is the simplicial presheaf (Ek × Fn)(m).

Lemma 3.7. Let Ek and Fn be as above. Then, for any integer m, there is a
canonical equivalence of Hodge filtered function spaces

(Ek × Fn)(m)
≈−→ Ek(m)× Fn(m).

Proof. This follows from the fact that the singular functor and taking homotopy
pullbacks commute with products and preserve weak equivalences. �

Proposition 3.8. Let E, F and G be connective rationally even Ω-spectra, and,
for integers k, n and j, let f : Ek → Fn ×Gj be a continuous map. Then, for any
integer m, there is an induced commutative diagram

Ek(m) //

''

(Fn ×Gj)(m)

≈
��

Fn(m)×Gj(m).

Proof. The map f consists of maps Ek → Fn and Ek → Gj which by Proposition
3.5 induce maps Ek(m) → Fn(m) and Ek(m) → Gj(m). Together they give the
map Ek(m)→ Fn(m)×Gj(m). That the diagram commutes follows from the fact
that homotopy pullbacks respect products. �
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4. Unstable splitting for Hodge filtered BP -spaces

Let p be a fixed prime number and n a non-negative integer. Let BP de-
note the Ω-spectrum representing BP -cohomology at p and let BP 〈n〉 be the
Ω-spectrum representing the nth intermediate theory defined in [17]. We write
BPk and BP 〈n〉k for the kth spaces of these spectra. For a given integer m, let
BPk(m) and BP 〈n〉k(m) be the Hodge filtered function spaces associated to BPk
and BP 〈n〉k, respectively. Our main result is the following analog of Wilson’s
theorem [17, Theorem 5.4].

Theorem 4.1. Let m and n be integers with n ≥ 0.
a) For every k ≤ 2(pn + · · · + 1), there is a weak equivalence of simplicial

presheaves

(18) BPk(m)
≈−→ BP 〈n〉k(m)×

∏
j>n

BP 〈j〉k+2(pj−1)(m).

b) For every k ≤ 2(pn−1 + · · · + 1), there is a weak equivalence of simplicial
presheaves

(19) BPk〈n〉(m)
≈−→ BP 〈n− 1〉k(m)×BP 〈n〉k+2(pn−1)(m).

Proof. a) In [17, Corollary 3.6], Wilson shows that, for k ≤ 2(pn + · · ·+ 1), there is
a map

(20) BPk → BP 〈n〉k ×
∏
j>n

BP 〈j〉k+2(pj−1).

By Proposition 3.8, we obtain the map (18) as the induced map of Hodge filtered
function spaces. By [17, Corollary 5.4], the map (20) is actually a homotopy equiv-
alence. By the two-out-of-three property for weak equivalences, it follows from the
commutative diagram of Proposition 3.8 that the map (18) is a weak equivalence.

b) The second equivalence is induced in the same way by the equivalence of [17,
Corollary 5.5]. �

Together with Theorem 3.3, Theorem 4.1 implies the following result.

Corollary 4.2. Let M be a complex manifold and m and n ≥ 0 be integers. Then
the natural map

BP kD(m)(M)→ BP 〈n〉kD(m)(M)

is surjective for k ≤ 2(pn + · · ·+ 1).

As in [17, Theorem 5.7], we can use Corollary 4.2 to deduce an analog of Quillen’s
theorem. Recall [17, p.105] that, for given integers k, n and j := 2(pn− 1), there is
a fiber sequence

BP 〈n〉k+j
vn−→ BP 〈n〉k

fn−→ BP 〈n− 1〉k
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where vn denotes the nth generator in BP ∗ = Z(p)[v1, . . . , vn, . . .]. For every integer
m, this sequence induces a homotopy commutative diagram in sPre
(21)

Sing∗BP 〈n〉k+j

��

// Sing∗BP 〈n〉k

��

// Sing∗BP 〈n− 1〉k

��
Sing∗|K(A∗(π∗BP 〈n〉C, k + j))| // Sing∗|K(A∗(π∗BP 〈n〉C, k))| // Sing∗|K(A∗(π∗BP 〈n− 1〉C, k))|

Sing∗|K(FmA∗(π∗BP 〈n〉C, k + j))|

OO

// Sing∗|K(FmA∗(π∗BP 〈n〉C, k))|

OO

// Sing∗|K(FmA∗(π∗BP 〈n− 1〉C, k))|

OO

in which each row is a fiber sequence (the functor Sing∗ is right Quillen adjoint
and preserves fiber sequences). Since homotopy pullbacks preserve fiber sequences,
diagram (21) induces a fiber sequence in sPre

(22) BP 〈n〉k+j(m)
vn(m)−−−−→ BP 〈n〉k(m)

fn(m)−−−−→ BP 〈n− 1〉k(m).

Furthermore, there are the maps gn : BPk → BP 〈n〉k which are compatible with
fn in the sense that fn ◦gn = gn−1. Each gn induces a map of simplicial presheaves

gn(m) : BPk(m)→ BP 〈n〉k(m).

For every complex manifold M , the above maps induce a commutative diagram

(23) BP
k+2(pn−1)
D (m)(M)

gn,m

��

vn,m // BP kD(m)(M)

gn,m

��
BP 〈n〉k+2(pn−1)

D (m)(M)
vn,m // BP 〈n〉kD(m)(M)

fn,m // BP 〈n− 1〉kD(m)(M)

where the lower row is exact, since (22) is a fiber sequence.
Let Ik〈n〉(m) be the subgroup of elements in BP kD(m)(M) which can be written

as a finite sum

u =
∑
i>n

vi,m(ui)(24)

with ui ∈ BP k+2(pi−1)
D (m)(M) and vi ∈ BP−2(pi−1). Since the lower row of dia-

gram (23) is exact, the subgroup Ik〈n〉(m) is contained in the kernel of the natural
homomorphism

BP kD(m)(M)→ BP 〈n〉kD(m)(M).

Theorem 4.3. Let M be a complex manifold and m and n ≥ 0 be integers. Then
the induced homomorphism

BP kD(m)(M)/Ik〈n〉(m)→ BP 〈n〉kD(m)(M)

is an isomorphism for k ≤ 2(pn + · · ·+ 1) and injective for k ≤ 2(pn + · · ·+ 1) + 2.

Proof. The surjectivity in dimensions k ≤ 2(pn + · · · + 1) follows directly from
Corollary 4.2. It remains to check injectivity the proof of which will follow as in
[17, Proof of Theorem 5.7].

Let k ≤ 2(pn + · · · + 1) + 2 and u ∈ BP kD(m)(M) be an element which maps
to 0 in BP 〈n〉kD(m)(M). Since M has the homotopy type of a finite complex, we
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know that the natural map is an isomorphism BP k(M) ∼= BP 〈n〉k(M) if n is large
enough. The map gn induces a morphism of long exact sequences
(25)

· · · // BP k−1
C (M) //

��

BP kD(m)(M) //

��

BP k(M)⊕Hk(M ;FmA∗(π∗BPC)) //

��

· · ·

· · · // BP 〈n〉k−1
C (M) // BP 〈n〉kD(m)(M) // BP 〈n〉k(M)⊕Hk(M ;FmA∗(π∗BP 〈n〉C)) // · · ·

This shows that the associated Hodge filtered theories satisfy

BP kD(m)(M) ∼= BP 〈n〉kD(m)(M) for n large enough.

Hence we can find and fix the integer q > n such that

gq,m(u) 6= 0 and fq,m(gq,m(u)) = gq−1,m(u) = 0.

By the exactness of the lower row in diagram (23), there is then an element

u′ ∈ BP 〈q〉k+2(pq−1)
D (m)(M) with vq,m(u′) = gq,m(u).

Since k ≤ 2(pn + · · ·+ 1) + 2 and q ≥ n+ 1, we have

k + 2(pq − 1) ≤ 2(pn + · · ·+ 1) + 2 + 2(pq − 1) ≤ 2(pq + · · ·+ 1).

Hence, by Corollary 4.2, there is an element uq in BP
k+2(pq−1)
D (m)(M) such that

gq,m(uq) = u′ and gq,m(vq,m(uq)) = gq,m(u). Since M has the homotopy type of
a finite complex, it follows again from the upper long exact sequence in (25) that

BP
k+2(pj−1)
D (m)(M) will be zero for j large enough. Hence repeating this process

with u replaced by u− vq,m(uq) shows that u can be written as a finite sum of the
form (24) and lies in Ik〈n〉(m). �

Remark 4.4. As mentioned in the introduction, we hope that Theorem 4.3 will
help to find new interesting examples of algebraic cobordism cycles on smooth
projective complex algebraic varieties. The idea is to study analogs of the Abel-
Jacobi map of [13] for BP 〈n〉 for various n in order to find families of cycles which
are topologically trivial but non-trivial algebraically. Eventually, this should lead to
new insights into the map from algebraic to complex cobordism for smooth complex
varieties.
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