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Abstract. We construct Hodge filtered cohomology groups for complex man-

ifolds that combine the topological information of generalized cohomology the-

ories with geometric data of Hodge filtered holomorphic forms. This theory
provides a natural generalization of Deligne cohomology. For smooth complex

algebraic varieties, we show that the theory satisfies a projective bundle for-

mula and A1-homotopy invariance. Moreover, we obtain transfer maps along
projective morphisms.

1. Introduction

For a complex manifold, Deligne cohomology is an elegant way to combine the
topological information of integral cohomology with the geometric data of holomor-
phic forms. For a given p, the Deligne cohomology group Hn

D(X;Z(p)) of a complex
manifold X is defined to be the nth hypercohomology of the Deligne complex ZD(p)

0→ Z (2πi)p−−−−→ OX → Ω1
X

d−→ . . .
d−→ Ωp−1

X → 0

of sheaves over X, where ΩkX denotes the sheaf of holomorphic k-forms.
Deligne cohomology is an important tool for many fundamental questions in al-

gebraic, arithmetic and complex geometry. Let us just highlight one of the algebraic
geometric applications of Deligne cohomology. Let X be a smooth projective com-
plex variety. The associated complex manifold is an example of a compact Kähler
manifold. Let CHpX be the Chow group of codimension p algebraic cycles modulo
rational equivalence. There is the classical cycle map

clH : CHpX → H2p(X;Z)

from Chow groups to the integral cohomology of the associated complex manifold
of X. This map sends an irreducible subvariety Z ⊂ X of codimension p in X to
the Poincaré dual of the fundamental class of a resolution of singularities of Z. The
so defined cohomology class of Z is an integral Hodge class, i.e. lies in the subgroup

Hdg2p(X) ⊂ H2p(X;Z)

of integral cohomology classes whose images inH2p(X;C) lie in the step F pH2p(X;C)
of the Hodge filtration of the de Rham cohomology.

Now Deligne cohomology groups enter the picture. Deligne showed that for every
given p the group H2p

D (X;Z(p)) sits in a short exact sequence

(1) 0→ J2p−1(X)→ H2p
D (X;Z(p))→ Hdg2p(X)→ 0
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where the group on the left hand side is a compact complex torus, the pth inter-
mediate Jacobian of X. Moreover, Deligne constructed a cycle map

clHD : CHpX → H2p
D (X;Z(p)).

Together with the short exact sequence (1) this provided an algebraic definition
of Griffiths’s Abel-Jacobi homomorphism from cycles homologically equivalent to
zero, i.e. those which are mapped to zero under clH , to the intermediate Jacobian
J2p−1(X) (see [12]). Thus Deligne groups play an important role in the study
of the cycle map, the Abel-Jacobi map and, in particular, the Griffiths group of
smooth projective complex varieties, i.e. the quotient group of cycles homologically
equivalent to zero modulo a potentially weaker relation, called algebraic equivalence.

More recently Totaro showed that the Griffiths group of a complex variety can be
analyzed using the purely topological information of its complex cobordism groups.
In [34] he proved that the map clH factors through a cycle map

clMU : CHpX → (MU∗(X)⊗MU∗ Z)2p

for any smooth projective complex variety X; in fact, Totaro showed a more gen-
eral result for any complex variety in terms of the corresponding bordism quotient
groups. Since the canonical map θ : MU2p(X)⊗MU∗ Z→ H2p(X;Z) is an isomor-
phism after tensoring with Q, this factorization is a torsion phenomenon. But in
general, the kernel of θ can be nontrivial. Generalizing work of Atiyah and Hirze-
bruch, Totaro constructed (using Godeaux-Serre varieties) elements in the kernel
of θ that lie in the image of clMU . In this way he found new examples of nontrivial
elements in the Griffiths group of Godeaux-Serre varieties. In [28], the second au-
thor extended Totaro’s idea for the cycle map to varieties over algebraically closed
fields of positive characteristic.

Now given that Deligne cohomology and complex cobordism are useful tools
for the understanding of the cycle map and also for the Abel-Jacobi map, the
question arises whether it is possible to combine these two approaches. In other
words, is it possible to combine the geometric information of differential forms on
a complex manifold with the topological information of complex cobordism groups
which carry richer data than cohomology groups? The purpose of this paper is to
give a positive answer to this question by constructing a natural generalization of
Deligne cohomology via complex cobordism and to set the stage for its applications,
in particular with a view towards a new Abel-Jacobi map.

The idea for the construction is similar to the one for generalized differential
cohomology theories in [17]. Let X be a complex manifold. The Deligne complex
ZD(p) is quasi-isomorphic to the homotopy pullback of the diagram of sheaves of
complexes

Z

��
Ω∗≥pX

// Ω∗X

where Ω∗X denotes the complex of holomorphic forms on X and Ω∗≥pX denotes the
subcomplex of forms of degree at least p. We would like to replace the complex
Z which contributes the singular cohomology of X with a spectrum representing
a more general cohomology theory. In particular, we would like to use the Thom
spectrum MU of complex bordism.
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In order to make this work, we have to throw the latter chain complexes and MU
in a common category. We do this by adding a simplicial direction and considering
simplicial sets rather than chain complexes. Moreover, in order to have a good
homotopy theory for complex manifolds as part of the team we consider presheaves
of spectra on the site of complex manifolds with open coverings. In order to illus-
trate the basic pattern for the construction, we will start in the next section with
a reformulation of Deligne cohomology in terms of simplicial presheaves before we
move on to the generalizations.

The technical details for the general case are a bit more involved. In particular, to
obtain a nice Eilenberg-MacLane spectrum functor from presheaves of differential
graded algebras to presheaves of symmetric spectra which preserves the product
structure requires more machinery on the pitch than one would like. The con-
struction is based on the idea of Brown in [4] to use sheaves of spectra to define
generalized sheaf cohomology.

Once our roster is complete, we can construct for every integer p and any sym-
metric spectrum E such that πjE ⊗ C vanishes if j is odd, a new presheaf of
symmetric spectra ED(p) as a suitable homotopy pullback and define the Hodge
filtered E-cohomology group EnD(p)(X) of X as the group of homotopy classes of
maps from X to the nth suspension of ED(p).

Given a map of symmetric spectra E → HZ from E to the integral Eilenberg-
MacLane spectrum, we obtain a natural homomorphism

(2) EnD(p)(X)→ Hn
D(X;Z(p))

between Hodge filtered E-cohomology and Deligne cohomology groups of any com-
plex manifold X. For E = MU , we will show that Hodge filtered complex bordism
has a multiplicative structure and that map (2) respects the ring structures on both
sides.

One motivation for this project is the result that for a compact Kähler mani-
fold X the diagonal Hodge filtered cohomology groups E2p

D (p)(X) sit in an exact
sequence

(3) 0→ J2p−1
E (X)→ E2p

D (p)(X)→ Hdg2p
E (X)→ 0.

The group on the right is the subset of elements in E2p(X) that map to Hodge
classes in cohomology. The left hand group is an analogue of the intermediate
Jacobian and carries the structure of a complex torus. Moreover, a map E → HZ
induces a natural map of short exact sequences from (3) to (1).

We have written the first five sections of this paper in a way that applies to com-
plex manifolds. In the final section we specialize to the case of smooth algebraic
varieties and modify our construction in order to take mixed Hodge structures into
account. Following Deligne and Beilinson, we replace the sheaves of holomorphic
forms occurring in the definition of ED(p) with the sheaves of holomorphic forms
having logarithmic poles to form Elog(p). These ”logarithmic” generalized coho-
mology groups are finitely generated if the groups E∗(pt) are, and are A1-invariant.

In the case that E is the topological Thom spectrum MU , we obtain a pro-
jective bundle formula and transfer maps for projective morphisms. This transfer
structure provides a new cycle map that associates to a smooth irreducible sub-
variety Z of codimension p of a smooth projective complex variety X an element
in MU2p

log(p)(X). This also induces a generalized Abel-Jacobi homomorphism on
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smooth cycles that map to zero in Hdg2p
MU (X), a subgroup of the cycles homologi-

cally equivalent to zero. More generally, for every smooth quasi-projective complex
variety X, we obtain a natural ring homomorphism from algebraic cobordism of
Levine and Morel [23] to Hodge filtered complex bordism

Ω∗(X)→MU2∗
log(∗)(X).

Finally, by [23], there is a natural isomorphism CH∗ ∼= Ω∗ ⊗L∗ Z of oriented
cohomology theories on SmC. This implies that there is a natural homomorphism

CH∗X →MU2∗
log(∗)(X)⊗MU∗ Z.

We conclude the paper with two examples of elements in algebraic cobordism
that map to zero in the Chow ring and in complex cobordism but remain non-zero
in MUlog2∗(∗)(X).

The authors wish to thank Clark Barwick, Hélène Esnault, Marc Levine, Burt
Totaro, and Claire Voisin for very helpful conversations and comments. We would
also like to thank the anonymous referee for many very helpful comments and
suggestions to improve the paper.

2. Deligne cohomology in terms of simplicial presheaves

We would like to modify the definition of Deligne cohomology groups in a way
that allows a generalization. The new theory should fit in an exact sequence similar
to (1) with the role of singular cohomology replaced by a generalized cohomology
theory.

The starting observation is that we can consider the Deligne complex ZD(p) also
as a homotopy pullback of complexes. Up to quasi-isomorphism ZD(p) fits into the
homotopy pullback square of complexes

(4) ZD(p)

��

// Z

��
Ω∗≥pX

// Ω∗X

where Ω∗X denotes the full complex of holomorphic differential forms and Ω∗≥pX is
the truncated subcomplex of Ω∗X of forms of degree at least p. The right hand
vertical map in (4) is given by (2πi)p times the canonical inclusion Z ↪→ C. Taking
the homotopy pullback along the lower horizontal map corresponds to cutting the
complex 0→ Z→ Ω∗X at degree p.

Now we would like to substitute the sheaf of chain complexes Z by a different
player. In order to set the stage for this replacement we consider diagram (4) in
the world of simplicial presheaves on complex manifolds.

2.1. Simplicial presheaves. Let ManC be the category of complex manifolds and
holomorphic maps. We consider it as a site with the Grothendieck topology defined
by open coverings.

Let Pre be the category of presheaves of sets on the site ManC. We denote
by sPre the category of simplicial objects in Pre, or equivalently the category
of presheaves of simplicial sets on ManC. Sending an object U of ManC to the
presheaf it represents defines a fully faithful embedding ManC ↪→ Pre. Since
any presheaf defines an object in sPre of simplicial dimension zero, we can also
embed ManC into sPre. On the other hand every simplicial set defines a simplicial
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presheaf. For example, the simplicial circle S1 = ∆[1]/∂∆[1] can be considered as
a simplicial presheaf by sending any complex manifold U to S1.

Let f : X → Y be a morphism of simplicial presheaves. Then f is called

• a (local) weak equivalence if it induces stalkwise a weak equivalence of
simplicial sets at every point of ManC;
• an injective cofibration if it induces a monomorphism of simplicial sets
X (U)→ Y(U) for every object U of ManC;
• a global fibration if it has the right lifting property with respect to any

injective cofibration which is also a weak equivalence.

These classes of morphisms define a closed proper cellular simplicial model struc-
ture on sPre (see [20, Theorem 2.3]). We denote its homotopy category by hosPre.

There are several other different interesting model structures on sPre. In the
local projective model structure the weak equivalences are again the local, i.e.
stalkwise, weak equivalences. A morphism f : X → Y of simplicial presheaves is
called

• a projective cofibration if it has the left lifting property with respect to
maps which induce a trivial fibration of simplicial sets for every object U ;
• a local projective fibration if it has the right lifting property with respect

to every projective cofibration which is also a local weak equivalence.

The classes of local weak equivalences, projective cofibrations and local projective
fibrations provide sPre with the structure of a proper cellular simplicial model
category (see [2] and [8]).

Theorem 2.1. ([2], [8], [9]) The identity functor is a left Quillen equivalence from
the local projective model structure to the local injective model structure on sPre.

There is a third class of fibrations given by a local condition that is in fact easier
to check and therefore convenient for applications. A map f of simplicial presheaves
is called a local fibration (resp. trivial local fibration) if the map of stalks fx is
a Kan fibration (resp. Kan fibration and weak equivalence) of simplicial sets for
every point x of ManC. Let M be a complex manifold and let U• be a simplicial
presheaf on ManC with an augmentation map U• → M in sPre. This map is
called a hypercover of M if it is a trivial local fibration and each Un is a coproduct
of representables.

An interesting feature of the local projective structure is that one can detect its
fibrant objects by a nice criterion (see [8] and [9]). Let M be a complex manifold
and let U• → M a hypercover of M . A simplicial presheaf X is said to satisfy
descent for the hypercover U• →M if the natural map

X (M)→ holim
n
X (Un)

is a weak equivalence of simplicial sets. A simplicial presheaf X is fibrant in the
local projective model structure if X (M) is a Kan complex for every object M
of ManC and if it satisfies descent for all hypercovers. We will make use of this
criterion when we show that the singular functor is a fibrant replacement in sPre.

Recall that a simplicial presheaf X is called locally fibrant if the unique map from
X to the final object is a local fibration. For locally fibrant simplicial presheaves X
and Y, let π(X ,Y) be the quotient of HomsPre(X ,Y) with respect to the equivalence
relation generated by simplicial homotopies. The set π(X ,Y) is called the set of
simplicial homotopy classes of morphisms from X to Y. For a simplicial presheaf
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X , denote by πTriv/X the category whose objects are the trivial local fibrations to
X and whose morphisms are simplicial homotopy classes of morphisms which fit in
the obvious commutative triangle over X . A crucial fact about the category πTriv
is that it approximates the homotopy category hosPre in the following sense.

Proposition 2.2. ([4, Proof of Theorem 2], [24, Proposition 2.1.13] and [20, p.
55]) For any simplicial presheaves X and Y with Y locally fibrant, the canonical
map

π′(X ,Y) := colim
p : X ′→X∈πTriv/X

π(X ′,Y)→ HomhosPre(X ,Y)

is a bijection.

We would like to be able to recover in hosPre homotopy classes of maps between
topological spaces. But the full embedding that sends an object of ManC to the
presheaf in simplicial dimension zero that it represents is very rigid. For we have
an isomorphism

HomManC(X,Y ) ∼= HomhosPre(X,Y ),

i.e. the functor ManC → hosPre is still a full embedding. The simplicial direction
is crucial and there are at least two ways to use it. The first one is the singular
functor of Suslin and Voevodsky [33] in the topological context.

Let ∆n be the standard topological n-simplex

∆n = {(t0, . . . , tn) ∈ Rn+1|0 ≤ tj ≤ 1,
∑

tj = 1}.

For topological spaces Y and Z, the singular function complex Sing∗(Z, Y ) is the
simplicial set whose n-simplices are continuous maps

f : Z ×∆n → Y.

We denote the simplicial presheaf

Z 7→ Sing∗(Z, Y ) =: Sing∗Y (Z)

by Sing∗Y . Note that Sing∗Y is a simplicial presheaf on our site. The singular
simplicial set of a topological space Y is denoted by S(Y ) ∈ sS. The geometric
realization of a simplicial set K is denoted by |K|.

For topological spaces Y and Z, we denote by Y Z the topological space of con-
tinuous maps Z → Y with the compact-open topology. Then the adjunction of
taking products and mapping spaces yields a canonical isomorphism of simplicial
sets

Sing∗(Z, Y ) = S(Y Z).

Lemma 2.3. Let Y be a CW -complex. The simplicial presheaf Sing∗Y is a fibrant
object in the local projective model structure on sPre.

Proof. Since the singular complex of any topological space is a Kan complex,
Sing∗Y is objectwise fibrant. By [9, Corollary 7.1], it remains to show that Sing∗Y
satisfies descent for all hypercovers. So let X be a complex manifold and U• → X
a hypercover. By [10, Theorem 1.3], the induced map hocolimn Un → X is a weak
equivalence. Since Y is fibrant and S preserves weak equivalences, the induced map

Sing∗Y (X)→ Sing∗Y (hocolim
n

Un) = holim
n

Sing∗Y (Un)

is a weak equivalence too. Hence Sing∗Y satisfies descent for every hypercover and
is fibrant. �
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Proposition 2.4. Let K be a simplicial set. The natural map

K → Sing∗|K|

is a weak equivalence of simplicial presheaves.

Proof. The stalks of the simplicial presheaf K are all canonically isomorphic to
K itself. In order to compute the stalks of Sing∗|K|, x be a point in a complex
manifold X and let Dε be a small open disk of radius ε containing x. Then we have
a canonical map

colim
ε→0

Hom(∆•, |K|Dε)→ Hom(∆•, |K|).

Since X is a manifold and hence locally contractible, the left hand side is isomorphic
to the stalk (Sing∗|K|)x at x. The right hand side is just the singular complex of
the topological space |K|. Hence we have a map

(Sing∗|K|)x → S(|K|).

This map is a weak equivalence. This implies that the map K → (Sing∗|K|)x
is a weak equivalence. Hence K → Sing∗|K| is a weak equivalence of simplicial
presheaves. �

Lemma 2.3 and Proposition 2.4 show that Sing∗|K| is a fibrant replacement of
K in the local projective model structure on sPre.

Lemma 2.5. The functor Sing∗ : sS → sPre, K 7→ Sing∗|K|, sends weak equiva-
lences in sS to local weak equivalences.

Proof. This follows immediately from the calculation of stalks in the proof of Propo-
sition 2.4. �

Proposition 2.6. Let X be a complex manifold and K be a simplicial set. There
is a natural bijection

HomhosPre(X,Sing∗|K|) ∼= HomhoTop(X, |K|).

Proof. There are different ways to see this. One would be to apply Verdier’s hy-
percovering theorem, which we recalled in Proposition 2.2. This is possible since
Sing∗|K| is stalkwise fibrant. Another way is to use the freedom to pick one of the
various underlying model structures for the homotopy category of sPre. In the
local projective model structure, X is a cofibrant object, since it is representable.
By Lemma 2.3, Sing∗|K| is fibrant in the local projective structure. Then we get
the following sequence of natural bijections

HomhosPre(X,Sing∗|K|) ∼= π0(Sing∗|K|(X)) ∼= π0(S(|K|X) ∼= HomhoTop(X, |K|).

�

As a consequence of Propositions 2.4 and 2.6, we obtain the following result
about maps in the homotopy category to a simplicial presheaf given by a simplicial
set.

Corollary 2.7. Let X be a complex manifold and K be a simplicial set. There is
a natural bijection

HomhosPre(X,K) ∼= HomhoTop(X, |K|).
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For given n ≥ 0 and an abelian group A, let K(A,n) be an Eilenberg-MacLane
space in sS. For a topological space X, we denote by Hn

sing(X;A) the nth singular
cohomology with coefficients in A. It is isomorphic to the group of maps X →
|K(A,n)| in the homotopy category hoTop. From [17, Corollary D.13], we can
read off the homotopy groups of the global sections of Sing∗|K(A,n)|.

Lemma 2.8. For any complex manifold X, the ith homotopy group of the simplicial
set Sing∗|K(A,n)|(X) is given by a natural isomorphism

πi(Sing∗|K(A,n)|(X)) ∼= Hn−i
sing (X;A).

Moreover, Corollary 2.7 shows that K(A,n) represents singular cohomology for
complex manifolds also in hosPre.

Proposition 2.9. For an abelian group A and a complex manifold X, there is a
natural isomorphism

HomhosPre(X,K(A,n)) ∼= Hn
sing(X;A).

Proof. By Propositions 2.4 and 2.6, the set HomhosPre(X,K(A,n)) is in bijection
with HomhoTop(X, |K(A,n)|) ∼= Hn

sing(X;A). �

Remark 2.10. For an abelian group A, we also denote by A the constant presheaf
with value A. We denote the image of the complex with a single nontrivial sheaf
A placed in degree n ≥ 0 under the Dold-Kan correspondence by K(A,n). This is
just the constant simplicial presheaf with value the simplicial Eilenberg-MacLane
space K(A,n).

2.2. Hypercohomology. For a chain complex of presheaves of abelian groups C∗
on ManC, we denote by Hi(C∗) the presheaf U 7→ Hi(C∗(U)). For a cochain
complex C∗ we will denote by C∗ its associated chain complex given by Cn := C−n.
For any given n, we denote by C∗[n] the cochain complex given in degree q by
Cq[n] := Cq+n. The differential on C∗[n] is the one C∗ multiplied by (−1)n.

Applying the normalized chain complex functor pointwise we obtain a functor
G 7→ N(G) from simplicial presheaves of abelian groups to chain complexes of
presheaves of abelian groups. Then we have πi(G) ∼= Hi(N(G)). Moreover, the
functor has a right adjoint Γ again obtained by applying the corresponding functor
for chain complexes pointwise. The following result is the analog of the Dold-Kan
correspondence for simplicial presheaves.

Proposition 2.11. ([4] and [24, Proposition 2.1.24]) The pair (N,Γ) is a pair of
mutually inverse equivalences between the category of complexes of presheaves of
abelian groups C∗ with Ci = 0 for i < 0 and the category of simplicial presheaves of
abelian groups.

Let F be a presheaf of abelian groups. We denote the image of the complex with a
single nontrivial presheaf F placed in degree n under the Dold-Kan correspondence
by K(F , n). The nth cohomology Hn(X;F) of X with coefficients in F is defined
as the sheaf cohomology of X with coefficients in the sheaf aF associated to F .

If C∗ is a cochain complex of presheaves of abelian groups on ManC, the hyper-
cohomology H∗(U, C∗) of an object U of ManC with coefficients in C∗ is the graded
group of morphisms Hom(ZU , aC∗) in the derived category of cochain complexes of
sheaves on ManC, where aC∗ denotes the complex of associated sheaves of C∗.
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The following result is a version of Verdier’s hypercovering theorem due to Ken
Brown in [4, Theorem 2]. We refer the reader also to [24, Proposition 2.1.25] and
[22] for more details.

Proposition 2.12. ([4, Theorem 2]) Let C∗ be a cochain complex of presheaves of
abelian groups on ManC. Then for any integer n and any object U of ManC one
has a canonical isomorphism

Hn(U ; C∗) ∼= HomhosPre(U,Γ(C∗[−n])).

In particular, if C∗ = F is a presheaf of abelian groups, we have

Hn(U ;F) ∼= HomhosPre(U,K(F , n)).

2.3. Deligne cohomology in terms of simplicial presheaves. For p ≥ 0, let
K(Z, n)→ K(C, n) be a map of simplicial sets whose homotopy class corresponds
to the (2πi)p-multiple of the canonical inclusion Z ⊂ C, under the isomorphism

HomhosS(K(Z, n),K(C, n)) ∼= Hom(Z,C).

This induces a morphism of simplicial presheaves

K(Z, n)→ K(C, n).

As mentioned in Remark 2.10, the constant simplicial presheaf K(C, n) is the image
of the Dold-Kan correspondence of the complex C given by the constant presheaf
C in degree n. The canonical inclusion into the complex of sheaves Ω∗[−n] of
holomorphic forms induces a map of simplicial presheaves

K(C, n)→ Γ(Ω∗[−n]).

Combining these maps we obtain a morphism of simplicial presheaves

K(Z, n)→ Γ(Ω∗[−n]).

We define K(Z, n)(p) to be the homotopy pullback of the diagram of simplicial
presheaves

(5) K(Z, n)(p)

��

// K(Z, n)

��
Γ(Ω∗≥p[−n]) // Γ(Ω∗[−n]).

For a simplicial presheaf X , we call the abelian groups

HomhosPre(X ,K(Z, n)(p))

the Hodge filtered K(Z, n)-cohomology groups of X .

Proposition 2.13. Let X be a complex manifold. The Hodge filtered K(Z, n)-
cohomology groups of X agree with Deligne cohomology groups of X, i.e. for every
n ≥ 0 and p ≥ 0, the map induced by the adjointness property of the Dold-Kan
correspondence induces an isomorphism

HomhosPre(X,K(Z, n)(p)) ∼= Hn
D(X;Z(p)).

This result follows from the fact that the Dold-Kan correspondence induces a
map of long exact sequences in which we know that all the maps but the one in
question are isomorphisms. We will discuss this in a more general context in the
next section (see Proposition 4.5 below).
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3. Stable homotopy theory for complex manifolds

3.1. Presheaves of symmetric spectra. Although most of the theory can be
formulated in terms of simplicial presheaves, we need a more general setting in
order to obtain a product structure in the next section. Therefore, we consider
presheaves of symmetric spectra.

Let T be a Grothendieck site whose underlying category is small. Let sPre∗
be the category of pointed simplicial presheaves on T. A symmetric sequence in
sPre∗ is a sequence of pointed simplicial presheaves X0,X1, . . . with an action by
the nth symmetric group Σn on Xn. For two symmetric sequences X and Y, the
tensor product X ⊗ Y is defined as the symmetric sequence given in degree n by

(X ⊗ Y)n =
∐

p+q=n

Σn ×Σp×Σq (Xp ∧ Yq).

Let Sn denote the n-fold smash product of the simplicial circle

S1 = ∆1/∂∆[1]

with itself. Considering Sn as a constant simplicial presheaf, we obtain a symmetric
sequence (S0, S1, S2, . . .) where Σn acts on Sn by permutation of the factors. We
denote this symmetric space by S.

A presheaf of symmetric spectra E is given by a sequence of pointed simplicial
presheaves En with an action Σn for n ≥ 0 together with Σn-equivariant maps
S1 ∧ En → En+1 such that the composite

Sp ∧ En → Sp−1 ∧ En+1 → . . .→ En+p

is Σp × Σn-equivariant for all n, p ≥ 0. A map E → F of presheaves of symmetric
spectra is a collection of Σn-equivariant maps En → Fn compatible with the struc-
ture maps of E and F . Hence we could say that a presheaf of symmetric spectra
is a symmetric spectrum object in the category sPre∗. This justifies denoting the
category of presheaves of symmetric spectra on T by

SpΣ(sPre∗)(T) = SpΣ(sPre∗).

Another way to think of a presheaf of symmetric spectra E is that E is a sym-
metric space together with the structure of an S-module given by a map

m : S⊗ E → E .
The important advantage of symmetric spectra compared to, say, presheaves of

Bousfield-Friedlander spectra is that SpΣ(sPre∗) has a monoidal structure defined
as follows. For two presheaves of symmetric spectra E and F , the smash product
E ∧ F is defined as the coequalizer

E ⊗ S⊗F ⇒ E ⊗ F → E ⊗S F =: E ∧ F .
The two maps in the diagram are given by the module structure of F and the
twisted module structure map of E

E ⊗ S τ−→ S⊗ E → E .

Example 3.1. As for symmetric spectra in [18], we have the following basic ex-
amples of presheaves of symmetric spectra.

(a) Let SpΣ be the category of symmetric spectra of simplicial sets defined in

[18]. Every symmetric spectrum E ∈ SpΣ defines a presheaf of symmetric spectra
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given by the constant presheaf with value E. In particular, the sequence of constant
simplicial presheaves (S0, S1, S2, . . .) with the obvious structure maps also defines a
presheaf of symmetric spectra which we also denote by S and call it the symmetric
sphere spectrum.

(b) For a pointed simplicial presheaf X , we denote by Σ∞X the presheaf of
symmetric spectra given by the sequence of pointed simplicial presheaves Sn ∧ X
with the natural isomorphisms S1 ∧Sn ∧X → Sn+1 ∧X and the diagonal action of
Σn on Sn∧X coming from the left permutation action on Sn and the trivial action
on X .

(c) In particular, if X an object of T, we can associate to X a presheaf of
symmetric spectra Σ∞+ (X), where X denotes the simplicial presheaf represented by
X and the +-subscript means that we add a disjoint basepoint.

(d) Furthermore, if E is a presheaf of symmetric spectra and n an integer, then
we denote by ΣnE the nth suspension of E whose kth space is Ek+n.

(e) Let X and Y be presheaves of symmetric spectra. There is a function spec-

trum HomS(X ,Y) in SpΣ(sPre∗) defined as the limit of the diagram in SpΣ(sPre∗)

HomΣ(X ,Y) ⇒ HomΣ(S⊗X ,Y)

where the two arrows are given by m∗ and m∗ respectively for the S-module struc-
ture map S⊗X → X . The endofunctor HomS(Y,−) of SpΣ(sPre∗) is right adjoint
to the functor − ∧ Y.

The category SpΣ(sPre∗) has a stable model structure defined in two steps.
We equip sPre∗ either with the local injective or with the local projective model
structure. In either case we obtain the following intermediate structure.

Definition 3.2. A map f : E → F in SpΣ(sPre∗) is called a projective weak
equivalence (respectively fibration) if each fn : En → Fn is a weak equivalence
(respectively fibration) in sPre∗. A map is called a projective cofibration if it
has the left lifting property with respect to all maps that are projective weak
equivalences and projective fibrations.

For either the local injective or the local projective model structure on sPre∗,
the following result is a consequence of Hovey’s general result [19, Theorems 8.2
and 8.3].

Proposition 3.3. The classes of projective weak equivalence, projective fibrations
and projective cofibrations define a proper cellular model structure on SpΣ(sPre∗)

such that SpΣ(sPre∗) is a SpΣ-model category.

Definition 3.4. ([19, Definition 8.7]) Define the set S of maps in SpΣ(sPre∗) to
be

{Fn+1(C ∧ S1)
ζCn−−→ FnC}

as C runs through the domains and codomains of the generating cofibrations of
sPre∗, and n ≥ 0, where the map ζCn is adjoint to the map

C ∧ S1 → Evn+1FnC = Σn+1 × (C ∧ S1)

corresponding to the identity of Σn+1. The stable local injective model structure
(respectively stable local projective model structure) on SpΣ(sPre∗) is defined to
be the left Bousfield localization with respect to S of the strict local injective
(respectively local projective) model structure.



12 MICHAEL J. HOPKINS AND GEREON QUICK

Since both the local projective and local injective model structures are proper,
simplicial and cellular whose generating cofibrations and trivial cofibrations have
cofibrant domains and codomains, we can deduce the following consequence of [19,
Theorem 9.3], and Theorem 2.1.

Theorem 3.5. ([2], [8], [19], [21]) The identity functor on SpΣ(sPre∗) is a left
Quillen equivalence from the stable local projective model structure to the stable
local injective model structure. We denote the stable homotopy category obtained
by localizing SpΣ(sPre∗) at the stable local equivalences by hoSpΣ(sPre∗).

Definition 3.6. (1) A presheaf of symmetric spectra E ∈ SpΣ(sPre∗) is called an

Ω-spectrum if each En is fibrant in sPre∗ and the adjoint structure maps En → ES
1

n+1

are weak equivalences in sPre∗ for all n ≥ 0.
(2) A map in SpΣ(sPre∗) is called an injective fibration if it has the right lifting
property with respect to all maps that are level cofibrations and level weak equiv-
alences.
(3) A spectrum E in SpΣ(sPre∗) is called an injective spectrum if the map E → ∗
is an injective fibration.

By [19, Theorem 8.8], the stably fibrant objects are the Ω-spectra. For two
presheaves of symmetric spectra X and Y, let MapSpΣ(sPre∗)(X ,Y) denote the map-

ping space which is part of the simplicial structure on SpΣ(sPre∗). The following

lemma shows that the identity functor on SpΣ(sPre∗) is a Quillen equivalence from
the stable local injective model structure to the stable model structure of [21].

Lemma 3.7. Let f : X → Y be a map in SpΣ(sPre∗). Then the following condi-
tions are equivalent:
(1) f is a stable equivalence.
(2) f induces a weak equivalence of Kan complexes

MapSpΣ(sPre∗)(f, E) : MapSpΣ(sPre∗)(Y, E)→ MapSpΣ(sPre∗)(X , E)

for every injective Ω-spectrum E in SpΣ(sPre∗).
(3) f induces a level equivalence

HomS(f, E) : HomS(Y, E)→ HomS(X , E)

for every injective Ω-spectrum E in SpΣ(sPre∗).

Proof. In order to prove the lemma we recall the injective model structure on
SpΣ(sPre∗) of [21, Theorem 2]. A map in SpΣ(sPre∗) is called an injective cofibra-
tion (injective weak equivalence) if it is a levelwise cofibration (weak equivalence).
The fibrant objects in the injective model structure are the injective Ω-spectra.

The identity functor provides a Quillen equivalence between the injective and
projective model structures on SpΣ(sPre∗). In particular, every injective Ω-spectrum

is a fibrant object in the projective model structure on SpΣ(sPre∗) and every pro-
jective cofibrant object is also injective cofibrant. This has the following conse-
quence.

Let Qproj be a cofibrant replacement functor in the projective model structure.
If f is a stable equivalence, then MapSpΣ(sPre∗)(Qprojf, E) is a weak equivalence of
Kan complexes for every injective Ω-spectrum E . Since the maps X → QprojX and
Y → QprojY are level equivalences, we obtain that MapSpΣ(sPre∗)(f, E) is a weak
equivalence of Kan complexes for every injective Ω-spectrum E .



HODGE FILTERED COMPLEX BORDISM 13

Now let Rinj be a fibrant replacement functor in the injective model structure and
assume that f induces a weak equivalence MapSpΣ(sPre∗)(f, E) for every injective Ω-

spectrum E . This implies that MapSpΣ(sPre∗)(Qprojf,RinjF) is a weak equivalence
for every Ω-spectrum F . Since the map F → RinjF is a level equivalence, this
shows that MapSpΣ(sPre∗)(Qprojf,F) is a weak equivalence for every Ω-spectrum

F , i.e. that f is a stable equivalence. This proves that (1) and (2) are equivalent.
The second and third conditions are equivalent, since

EvkHomS(f, E) = MapSpΣ(sPre∗)(f,HomS(FkS
0, E)).

�

Consider SpΣ(sPre∗) with the stable local injective model structure. Let K

be the class in SpΣ(sPre∗) of all maps f ∧ X , where f is a stable trivial cofibra-
tion and X is a presheaf of symmetric spectra. One can show exactly as in [18,
§5.4], that the stable local injective model structure is monoidal and that each map
in K-cof is a stable equivalence. This fact implies that the monoid axiom holds
in SpΣ(sPre∗) and by [30, Theorem 4.1], we can deduce the following result on

monoids in SpΣ(sPre∗).

Theorem 3.8. The forgetful functor creates a model structure on the category of
monoids in SpΣ(sPre∗) for which a morphism is a weak equivalence (fibration)
if and only if the underlying map of presheaves of symmetric spectra is a stable
equivalence (stable fibration).

Remark 3.9. The functor SpΣ → SpΣ(sPre∗) sending a symmetric spectrum E
to the constant presheaf of symmetric spectra with value E is a strong symmetric
monoidal left Quillen functor. In particular, a commutative S-algebra E in SpΣ

is still a commutative S-algebra in SpΣ(sPre∗) when we consider E as a constant
presheaf.

3.2. Eilenberg-MacLane spectra. In the remainder of this section, we start to
explore Brown’s idea [4] to use sheaves of spectra to define generalized sheaf coho-
mology.

Let PreDGAC be the category of presheaves of differential graded C-algebras on
T. By [32], for every differential graded algebra A∗, there is functorial construction
of a symmetric Eilenberg-MacLane ring spectrum HA∗. (The reader may also want
to consult [11, §2.6] for a short summary on the construction of the functor H.)
Pointwise application yields a functor

H : PreDGAC → SpΣ(sPre∗).

By its construction, the functor H sends the constant presheaf C to the constant
symmetric Eilenberg-MacLane spectrum HC. Moreover, since the tensor product
in PreDGAC and the smash product in SpΣ(sPre∗) are defined pointwise, the
functor H is a lax monoidal functor and its image lies in fact in the subcategory of
monoids over HC, or in other words HC-algebras in SpΣ(sPre∗):

H : PreDGAC → HC−Alg.

In particular, a morphism C∗ → D∗ of presheaves of differential graded C-algebras
induces a morphism of monoids HC∗ → HD∗ in SpΣ(sPre∗).

Our applications in the following sections require graded versions of the complex
of holomorphic forms, since different coefficient rings will be substituted in the
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game. The correct choice of compatible gradings and filtrations is an important
point. This will become apparent in the proof of the main result in Theorem 4.13.

So we enlarge our roster by considering also cochains, cocycles and forms with
values in an evenly graded complex vector space V. The main example will be
V2∗ = π2∗MU ⊗ C. We will use the convention to grade cochains and forms with
values in V in such a way that Ci(X;Vj) has total degree (i− j). We will write

Cn(X;V2∗) :=
⊕
j

Cn+2j(X;V2j),

and

Hn(X;V2∗) :=
⊕
j

Hn+2j(X;V2j).

For the presheaf of holomorphic forms we will write

Ω∗(V2∗) =
⊕
j

Ω∗(V2j)[−2j].

For a given integer p, we will denote

Ω∗≥p(V2∗) :=
⊕
j

Ω∗≥p+j(V2j)[−2j].

Note that by our grading convention, this defines in general a complex different
from Ω∗(V2∗) even for negative p.

For hypercohomology groups we write

Hn(X; Ω∗≥p(V2∗)) =
⊕
j

Hn+2j(X; Ω∗≥p+j(V2j)[−2j]).

These gradings have corresponding counterparts on the level of Eilenberg-MacLane
spectra. Let V2∗ be an evenly graded C-algebra and C∗ ∈ PreDGAC. We denote
by C∗(V2∗) the presheaf of complexes given in degree n by

Cn(V2∗) =
⊕
j

Cn+2j ⊗ V2j .

The image of C∗(V2∗) under H in SpΣ(sPre∗) has the form

H(C∗(V2∗)) =
∨
j

Σ2jH(C∗ ⊗ V2j).

In particular, if C∗(V2∗) is just the graded ring V2∗ considered as a chain complex,
then we have

H(V2∗) =
∨
j

Σ2jH(V2j).

For example, let C∗ = Ω∗ be the presheaf of holomorphic forms on ManC. The
inclusion of cochain complexes C ↪→ Ω∗ induces a map of presheaves of symmetric
spectra

HC→ HΩ∗.

Moreover, for the C-algebra V2∗, there is a canonical map of presheaves of symmetric
spectra

H(V2∗)→ H(Ω∗(V2∗)).
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Proposition 3.10. Let X be an object of T, C∗ ∈ PreDGAC and let V2∗ be
an evenly graded commutative C-algebra. Then we have a natural isomorphism of
graded-commutative rings⊕

n

HomhoSpΣ(sPre∗)(Σ
∞
+ (X),ΣnH(C∗(V2∗))) ∼=

⊕
n

Hn(X; C∗(V2∗)).

In particular, for X ∈ManC, there are natural isomorphisms of graded commuta-
tive rings⊕

n

HomhoSpΣ(sPre∗)(Σ
∞
+ (X),ΣnH(Ω∗(V2∗))) ∼=

⊕
n

Hn(X;V2∗) and

⊕
n

HomhoSpΣ(sPre∗)(Σ
∞
+ (X),ΣnH(Ω∗≥p(V2∗))) ∼=

⊕
n

Hn(X; Ω∗≥p(V2∗)).

Proof. Let Hnomo : ChZ → SpΣ be the non-monoidal Eilenberg-MacLane spectrum
functor that sends a chain complex C to a symmetric spectrum which represents
cohomology with coefficients in C. By [31, Proposition 5.1], the canonical map
HnomoC → HC is an equivalence of underlying symmetric spectra. Hence, for
every object U ∈ T, the canonical map

Hnomo(C∗(V2∗))(U)→ H(C∗(V2∗))(U)

is an equivalence of symmetric spectra. By abuse of notation, we denote the point-
wise application of Hnomo again by Hnomo. Then the induced map of presheaves of
symmetric spectra

(6) Hnomo(C∗(V2∗))→ H(C∗(V2∗))

is a stable equivalence in SpΣ(sPre∗). The spectrum Hnomo(C∗(V2∗)) is a ring in
the stable homotopy category of presheaves of spectra. Moreover, equivalence (6)
induces an isomorphism of rings in the stable homotopy category of presheaves of
spectra between Hnomo(C∗(V2∗)) and H(C∗(V2∗)). Hence it suffices to show that

HomhoSpΣ(sPre∗)(Σ
∞
+ (X),ΣnHnomo(C∗(V2∗))) ∼= Hn(X; C∗(V2∗))

is an isomorphism.
Since Σ∞ is left Quillen adjoint to the evaluation functor at the 0th space, it

suffices to show that we have a natural isomorphism

HomhosPre(X,Γ(C∗(V2j)[−n])) ∼= Hn+2j(X; C∗(V2j)).

But, using our grading conventions, this is the content of Proposition 2.12. �

3.3. The singular functor for symmetric spectra. In this subsection we work
again on the site T = ManC. Our goal now is to show that a constant presheaf
of symmetric spectra E represents E-cohomology also in hoSpΣ(sPre∗). There are
different ways to show this. We use the singular functor as our favorite tool.

Let SpΣ
Top be the category of symmetric spectra of topological spaces. Let X be a

complex manifold and F ∈ SpΣ
Top. The levelwise defined spectrum FX of functions

from X to F is again a symmetric spectrum of topological spaces. Applying the
singular simplicial set functor levelwise yields then a symmetric spectrum of simpli-
cial sets S(FX) given in degree n by S(FXn ). We denote the object in SpΣ(sPre∗),
defined by the functor

X 7→ S(FX)



16 MICHAEL J. HOPKINS AND GEREON QUICK

by Sing∗F . Moreover, for E ∈ SpΣ let |E| be the geometric realization of E in

SpΣ
Top. Then Sing∗ also defines a functor

Sing∗ : SpΣ → SpΣ(sPre∗), E 7→ Sing∗|E|.

Proposition 3.11. Let E ∈ SpΣ be a symmetric spectrum. We also denote by E
the constant presheaf with value E. The natural map

E → Sing∗|E|

is a levelwise equivalence and hence a stable equivalence in SpΣ(sPre∗).

Proof. By Proposition 2.4, each map En → Sing∗|En| ∼= (Sing∗|E|)n is a weak

equivalence in sPre∗. Hence E → Sing∗|E| is a levelwise equivalence in SpΣ(sPre∗).
�

Lemma 3.12. For any spectrum E ∈ SpΣ, the presheaf of symmetric spectra
Sing∗|E| is fibrant in the stable local projective model structure on SpΣ(sPre∗).

Proof. By Lemma 2.3, each space Sing∗|E|n is fibrant in the local projective model
structure on sPre∗. Moreover, for any complex manifold X, the induced map

S(|En|X)→ S((Ω|En+1|)X) ∼= Ω(S(|En+1|X))

is again a weak equivalence of simplicial sets. Hence Sing∗|E|n → ΩSing∗|E|n+1 is
a weak equivalence in sPre∗. �

Proposition 3.13. Let E be a symmetric spectrum and let X be a complex mani-
fold. There is a natural isomorphism

HomhoSpΣ(sPre∗)(Σ
∞
+ (X),Sing∗|E|) ∼= HomhoSpΣ

Top
(Σ∞+ (X), |E|).

Proof. By Lemma 3.12, Sing∗|E| is fibrant in the stable local projective model

structure on SpΣ(sPre∗). Since Σ∞+ (X) is cofibrant, there is a sequence of natural
bijections

HomhoSpΣ(sPre∗)(Σ
∞
+ (X),Sing∗|E|) ∼= π0(S(|E|X)) ∼= HomhoSpΣ

Top
(Σ∞+ (X), |E|).

�

Propositions 3.11 and 3.13 show that the constant presheaf of symmetric spectra
given by a symmetric spectrum E represents E-cohomology for manifolds also in
hoSpΣ(sPre∗).

Corollary 3.14. Let E be a symmetric spectrum and let X be a complex manifold.
There is a natural isomorphism

HomhoSpΣ(sPre∗)(Σ
∞
+ (X), E) ∼= HomhoSpΣ

Top
(Σ∞+ (X), |E|).

4. Hodge filtered cohomology groups

4.1. The definition. In this section we work on the site T = ManC of complex
manifolds with the topology defined in Section 2.1.

Definition 4.1. A rationally even spectrum is a symmetric spectrum E with the
property that πjE ⊗Q = 0 if j is odd.
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Let E ∈ SpΣ be a rationally even spectrum and let

ι : E → E ∧HC =: EC

be a map in SpΣ which induces for every n the map

π2n(E)
(2πi)n−−−−→ π2n(EC)

defined by multiplication by (2πi)n on homotopy groups.
Let p be an integer. Multiplication by (2πi)p on homotopy groups determines a

map

E
(2πi)pι−−−−→ E ∧HC.

Let

E ∧HC→ H(π2∗E ⊗ C)

be a map in SpΣ that induces the isomorphism

π2∗(E ∧HC) ∼= π2∗E ⊗ C.

Let

(7) τE : E → H(π2∗E ⊗ C)

be the composition considered as a map in SpΣ(sPre∗).
Composition with the canonical map

H(π2∗E ⊗ C)→ H(Ω∗(π2∗E ⊗ C))

yields a map of presheaves of symmetric spectra on ManC

(8) E → H(Ω∗(π2∗E ⊗ C)).

Given an integer p, we define the presheaf of symmetric spectra ED(p) by the

homotopy cartesian square in SpΣ(sPre∗)

(9) ED(p)

��

// E

��
H(Ω∗≥p(π2∗E ⊗ C)) // H(Ω∗(π2∗E ⊗ C)).

Definition 4.2. Let n and p be integers, X be a presheaf of symmetric spectra
on ManC, and E be a rationally even spectrum. The Hodge filtered E-cohomology
groups EnD(p)(X ) are defined as

EnD(p)(X ) := HomhoSpΣ(sPre∗)(X ,Σ
nED(p)).

In particular, for a complex manifold X, we have

EnD(p)(X) = HomhoSpΣ(sPre∗)(Σ
∞
+ (X),ΣnED(p)).

Remark 4.3. It follows from the definition of ED(p) and the splitting of ordinary
cohomology theories that rationally Hodge filtered complex cohomology splits in
the same way into a sum of rational Deligne cohomology groups as rational E-
cohomology splits into a sum of ordinary cohomology. More precisely, the definitions
are chosen such that there is an isomorphism

(10) (E ∧HQ)nD(p)X ∼=
⊕
j

Hn+2j
D (X;Q(p+ j))⊗ π2jE.
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Remark 4.4. For p = 0, the Deligne complex ZD(0) is canonically isomorphic to
Z and the cohomology groups Hn

D(X;Z(0)) are isomorphic to integral cohomology
Hn(X;Z). But for generalized Hodge filtered E-cohomology, it is in general not
true that we recover ordinary E-cohomology groups if p = 0. The bottom row in
the diagram

(11) ED(0)

��

// E

��
H(Ω∗≥0(π2∗MU ⊗ C)) // H(Ω∗(π2∗E ⊗ C))

is not an equivalence. By definition of

H(Ω∗≥0(π2∗E ⊗ C)) =
∨
j

Σ2jH(Ω∗≥j(π2jE ⊗ C))

the step of the Hodge filtration that we divide out depends on the grading of
π2∗E ⊗ C. In particular, the top row in diagram (11) defining ED(0) is not an
equivalence.

4.2. Functoriality and Mayer-Vietoris sequence. Let f : X → Y be a map of
presheaves of symmetric spectra f : X → Y. Then it follows from definition that
there is an induced pullback map

f∗ : EnD(p)(Y)→ EnD(p)(X ).

In particular, if ρ : U → X is a hypercovering of a complex manifold X, then ρ
induces an isomorphism

(12) ρ∗ : EnD(p)(X)
∼=−→ EnD(p)(U).

Furthermore, it is a general fact that when Z is the homotopy pullback of a
diagram in SpΣ(sPre∗)

U

��
V // W,

there is an induced long exact sequence

. . .→ [X ,ΩU ]⊕ [X ,ΩV]→ [X ,ΩW]→ [X ,Z]→ [X ,U ]⊕ [X ,V]→ [X ,W].

Since E(p) is defined as the homotopy pullback of (9), the Hodge filtered cohomol-
ogy groups sit in a long exact sequence. For a complex manifold this sequence has
the following form.

Proposition 4.5. For any complex manifold X, Hodge filtered E-cohomology groups
sit in a long exact sequence

. . .→ Hn−1(X;π2∗E ⊗ C) → EnD(p)(X)→
→ En(X)⊕Hn(X; Ω∗≥p(π2∗E ⊗ C)) → Hn(X;π2∗E ⊗ C)→ . . .

Proof. By the above fact, it suffices to determine the groups in the long exact
sequence resulting from the definition of ED(p) as the homotopy pullback of (9).
This can be done using Proposition 3.13 for En(X) and using Proposition 3.10 for
the hypercohomology groups. �
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Remark 4.6. If X is a compact Kähler manifold, then the hypercohomology group
of Ω∗≥p(π2∗E⊗C) in the long exact sequence of Proposition 4.5 detects the Hodge
filtration, i.e. there is an isomorphism

Hn(X; Ω∗≥p(π2∗E⊗C)) ∼=
⊕
j

F p+jHn+2j(X;π2jE⊗C) =: F p+∗Hn(X;π2∗E⊗C).

But for an arbitrary complex manifold X, the hypercohomology of Ω∗≥p(π2∗E⊗C)
is a much less well-behaved group. We will see below how this defect can be fixed
for smooth complex algebraic varieties.

For a cofibration of presheaves of symmetric spectra i : Y → X , for example the
map induced by a monomorphism of simplicial presheaves, let X/Y be the quotient

in SpΣ(sPre∗). We define relative Hodge filtered E-cohomology groups to be

(13) EnD(p)(X ,Y) := HomhoSpΣ(sPre∗)(X/Y,Σ
nED(p)).

Just as in topology, one proves the following result.

Proposition 4.7. These relative groups sit in a long exact sequence

(14) . . .→ En−1
D (p)(X ,Y)→ EnD(p)(X )→ EnD(p)(Y)→ EnD(p)(X ,Y)→ . . .

induced by the cofiber sequence Y → X → Y/X .

Moreover, there is a Mayer-Vietoris type long exact sequence for Hodge filtered
cohomology groups.

Proposition 4.8. Let X be a complex manifold and U and V be two open subman-
ifolds such that U ∪ V = X. Then there is a long exact Mayer-Vietoris sequence

. . .→ EnD(p)(X)→ EnD(p)(U)⊕ EnD(p)(V )→ EnD(p)(U ∩ V )→ En+1
D (p)(X)→ . . .

Proof. The long exact sequence is induced by applying the functor

HomhoSpΣ(sPre∗)(Σ
∞
+ (−),ΣnED(p))

to the pushout diagram

U ∩ V

��

// U

��
V // X

of simplicial presheaves corresponding to the covering of X by U and V . �

Finally, let g : E → F be a morphism of rationally even spectra and τF : F →
H(π2∗F⊗C) be a map with the properties described at the beginning of the previous
section (for τE). Then we can choose τE : E → H(π2∗E ⊗ C) with the properties
we required above such that we get a commutative diagram

E //

τE

��

F

τF

��
H(π2∗E ⊗ C) // H(π2∗F ⊗ C).
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Together with the induced map on filtered forms we obtain a commutative diagram
of presheaves of symmetric spectra

(15) E

��

// H(Ω∗(π2∗E ⊗ C))

��

H(Ω∗≥p(π2∗E ⊗ C))oo

��
F // H(Ω∗(π2∗F ⊗ C)) H(Ω∗≥p(π2∗F ⊗ C)).oo

This diagram induces a map of homotopy pullbacks

g(p) : ED(p)→ FD(p)

and hence map of Hodge filtered cohomology groups

gD(p) : EnD(p)(X )→ FnD(p)(X )

for every presheaf of symmetric spectra X .

Proposition 4.9. Let g : E → F be a stable equivalence of spectra and let τF : F →
H(π2∗F ⊗ C) be a map with the properties described above. Then the map

g(p) : ED(p)→ FD(p)

is a stable equivalence in SpΣ(sPre∗). In particular, the induced homomorphism

gD(p) : EnD(p)(X )→ FnD(p)(X )

is an isomorphism for every X ∈ SpΣ(sPre∗).

Proof. Since g is a homotopy equivalence, the vertical maps of diagram (15) are

pointwise equivalences and hence stable equivalences in SpΣ(sPre∗). Hence the
induced map of homotopy pullbacks is a stable equivalence as well. �

Remark 4.10. The definition of Hodge filtered E-cohomology groups involves the
choice of a map

E ∧HC→ H(π2∗E ⊗ C).

By our assumption on E, the space of such choices is simply connected. This implies
that the Hodge filtered E-cohomology groups of Definition 4.2 are independent of
this choice, and a map g : E → F of rationally even spectra induces a well defined
map from Hodge filtered E-cohomology groups to Hodge filtered F cohomology
groups.

4.3. The fundamental short exact sequence for compact Kähler mani-
folds. From now on we assume that X is a compact Kähler manifold. Let p be
an integer and let E be a rationally even spectrum. We will show that the group
E2p
D (p)X fits into a short exact sequence that is a natural generalization of the short

exact sequence for Deligne cohomology (1). The argument is analogous to the case
of Deligne cohomology for which we refer to [35, §12].

Therefore, we split the long exact sequence of Proposition 4.5 into a short ex-
act sequence. For a compact Kähler manifold X, the Hodge filtration yields an
isomorphism

Hn+2j(X; Ω∗≥p+j(π2jE ⊗ C)) ∼= F p+jHn+2j(X;π2jE ⊗ C).

There is an analogue of the intermediate Jacobian defined which we will denote by
J2p−1
E (X). It arises as the cokernel of the map

(16) E2p−1X ⊕ F p+∗H2p−1(X;π2∗E ⊗ C)→ H2p−1(X;π2∗E ⊗ C)
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where we use the notation

F p+∗H2p−1(X;π2∗E ⊗ C) :=
⊕
j

F p+jH2p−1+2j(X;π2jE ⊗ C).

For every j, the Hodge filtration yields a decomposition as a direct sum

H2p−1+2j(X;π2jE⊗C) ∼= F p+jH2p−1+2j(X;π2jE⊗C)⊕F p+jH2p−1+2j(X;π2jE ⊗ C)

where the bar denotes the image under complex conjugation.
Since this is a direct sum decomposition, the intersection

F p+∗H2p−1(X;π2∗E ⊗ C) ∩H2p−1(X;π2∗E ⊗ R) = {0}

is trivial. Considering F p+∗H2p−1(X;π2∗E ⊗ C) as a subspace of E2p−1(X) ⊗ C
we see that the map

E2p−1(X)⊗ R→ E2p−1(X)⊗ C/F p+∗H2p−1(X;π2∗E ⊗ C)

is an isomorphism of R-vector spaces. Therefore, the lattice

E2p−1(X) ⊂ E2p−1(X)⊗ R

is a lattice in the C-vector space

E2p−1(X)⊗ C/F p+∗H∗(X;π2∗E ⊗ C)2p−1.

Definition 4.11. We define the pth generalized Jacobian of X to be the compact
complex torus

J2p−1
E (X) := E2p−1(X)⊗ C/(F p+∗H∗(X;π2∗E ⊗ C)2p−1 + E2p−1(X)).

Remark 4.12. The pth generalized Jacobian of X is isomorphic to the group
E2p−1(X) ⊗ R/Z. In particular, J2p−1

E (X), as a real Lie group, is a homotopy
invariant of X. Though as a complex Lie group it depends on the complex structure
of X. Since X is compact, there is an isomorhism E∗(X)⊗Q ≈ H∗(X;Q)⊗ π∗E.

When E has a homotopy associative multiplication, this means that ⊕pJ2p−1
E (X)

is a flat π∗E-module.

To complete the picture, let Hdg2p
E (X) be the subgroup of E2p(X) that is given

as the pullback

(17) Hdg2p
E (X)

��

// E2p(X)

��⊕
j F

p+jH2p+2j(X;π2jE ⊗ C) //⊕
j H

2p+2j(X;π2jE ⊗ C).

The group Hdg2p
E (X) is determined by the Hodge structure on the cohomology of

the Kähler manifold X. The Hodge decomposition of the lower right corner of (17)
yields a splitting as a direct sum

H∗(X;π2∗E ⊗ C)2p =
⊕
j≥0

 ⊕
s+t=2(p+j)

Hs,t(X;C)⊗ π2jE

 .
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By Hodge symmetry, we see that Hdg2p
E (X) is the subgroup of E2p(X) consisting

of those elements whose images under the map

E2p(X)→
⊕
j

 ⊕
s+t=2(p+j)

Hs,t(X;C)⊗ π2jE


lie in the groups Hp+j,p+j(X;C)⊗ π2jE for j ∈ Z.

Summarizing we obtain the following theorem whose second assertion follows
immediately from Theorem 2.13.

Theorem 4.13. Let p be an integer, X be a compact Kähler manifold and let
E be a rationally even spectrum. The Hodge filtered complex cohomology groups
E2p
D (p)(X) fit into the short exact sequence

(18) 0→ J2p−1
E (X)→ E2p

D (p)(X)→ Hdg2p
E (X)→ 0

where Hdg2p
E (X) is the pullback defined by (17).

Moreover, if there is a map E → HZ of symmetric spectra, we obtain an induced
map of short exact sequences

(19) 0 // J2p−1
E (X)

��

// E2p
D (p)X

��

// Hdg2p
E X

��

// 0

0 // J2p−1(X) // H2p
D (X;Z(p)) // Hdg2p(X;Z) // 0

5. Hodge filtered complex bordism

In this section we focus on the case of Hodge filtered complex cohomology groups
defined via the Thom spectrum MU of complex bordism. We recall that the ring
π2∗MU is isomorphic as a graded ring to the polynomial ring Z[x2, x4, . . .] where
for each i ≥ 0, x2i is a generator in degree 2i.

Before we apply the construction let us have a closer look at the choice of the
map

MU → H(π2∗MU ⊗ C).

Although any two choices give the same cohomology groups, we have to take a little
more care in order to get a multiplicative structure. We explain this point only for
the example of MU and leave it to the reader to pick his favorite spectrum E and
to do the necessary adjustments.

For E = MU , the three corners of the diagram corresponding to (9) that would
define the Hodge filtered cobordism spectrum as a homotopy pullback all carry a
natural product structure. These structures will induce a natural product structure
on Hodge filtered cobordism groups, once we make sure that the maps are multi-
plicative, i.e. preserve these product structures. By the construction of monoidal
Eilenberg-MacLane spectra, the map

H(Ω∗≥p(π2∗MU ⊗ C))→ H(Ω∗(π2∗MU ⊗ C))

induced by the canonical inclusion of complexes is a morphism of monoids in
SpΣ(sPre∗).

For the other map we make use of the fact that the rationalized spectrum MUQ ≈
HQ ∧ MU is a free commutative algebra over HQ, and so the commutative S-
algebra maps MU → E to any rational commutative S-algebra E are in one to one
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correspondence with the ring homomorphisms π∗MU → π∗E. The correspondence
is the one associating to a map its effect on homotopy groups. We can therefore
specify, up to a choice of point in a simply connected space, a map of commutative
S-algebras

ι : MU → H(π∗MU ⊗ C),

by requiring that for every n the induced map

π2nι : π2nMU → π2n(H(π∗MU ⊗ C)) = π2nMU ⊗ C

is multiplication by (2πi)n. We similarly obtain a map of commutative S-algebras

τ ′ :=
∨
p∈Z

(τ ′)p :
∨
p∈Z

MU →
∨
p∈Z

H(π2∗MU ⊗ C)

in which π∗(τ
′)p = (2πi)pπ∗ι. Composing with the de Rham equivalence∨

p∈Z
H(π2∗MU ⊗ C)

≈−→
∨
p∈Z

H(Ω(π2∗MU ⊗ C))

gives a map

τ :=
∨
p∈Z

τp :
∨
p∈Z

MU →
∨
p∈Z

H(Ω(π2∗MU ⊗ C))

of commutative S-algebras in presheaves of symmetric spectra, whose stalkwise effect
on homotopy groups is

π∗τ
p = (2πi)pπ∗ι.

We now define a presheaf of commutative S-algebras

(20)
∨
p∈Z

MUD(p)

by the homotopy cartesian square

(21)
∨
p∈Z

MUD(p) //

��

∨
p∈Z

MU

τ

��∨
p∈Z

H(Ω∗≥p(π2∗MU ⊗ C)) //
∨
p∈Z

H(Ω∗(π2∗MU ⊗ C))

and for every presheaf of symmetric spectra X , and p ∈ Z the Hodge filtered complex
bordism groups

MUnD(p) := HomhoSpΣ(sPre∗)(X ,Σ
nMUD(p)).

This defines in particular, for every complex manifold X, Hodge filtered complex
bordism groups MUnD(p)(X). Since (20) is a commutative S-algebra, we get the
following multiplicative structure on Hodge filtered complex bordism groups of
complex manifolds.

Theorem 5.1. For every complex manifold X, there is a multiplicative structure
on Hodge filtered complex bordism groups

MUnD(p)(X)⊗MUmD (q)(X)→MUn+m
D (p+ q)(X)
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induced by the structure of a commutative S-algebra in SpΣ(sPre∗) on (20). The
multiplication is graded-commutative in the sense that for α ∈ MUnD(p)(X), β ∈
MUmD (q)(X) we have

αβ = (−1)n+mβα ∈MUn+m
D (p+ q)(X).

Hence there is a structure of a graded-commutative ring on

MU∗D(∗)(X) :=
⊕
n,p

MUnD(p)(X).

Proposition 5.2. For every complex manifold X and every n and p, the map of
spectra MU → HZ induces a map from Hodge filtered complex bordism to Deligne
cohomology of X

MUnD(p)(X)→ Hn
D(X;Z(p))

which respects the product structures on both sides.

Proof. This is a consequence of Theorem 2.13 and Theorem 5.1. �

Proposition 5.3. For every complex manifold X, Hodge filtered complex bordism
groups sit in long exact sequence

. . .→MUn−1(X)⊗ C →MUnD(p)(X)→
→MUn(X)⊕Hn(X; Ω∗≥p(π2∗MU ⊗ C)) →MUn(X)⊗ C→ . . . .

Proof. This follows again from the definition of MUD(p) as the homotopy pullback
in diagram (21) and the isomorphism

MUn(X)⊗ C ∼= Hn(X;π2∗MU ⊗ C).

�

Example 5.4. The Hodge filtered cobordism groups of a point can be read off
from the long exact sequence of Proposition 5.3. We split sequence (5.3) into

0→ coker(α)→MUnD(p)(pt)→ ker(β)→ 0

where α is the map

α : MUn−1 ⊕Hn−1(pt; Ω∗≥p(π2∗MU ⊗ C))→MUn−1 ⊗ C
and β is the map

β : MUn ⊕Hn(pt; Ω∗≥p(π2∗MU ⊗ C))→MUn ⊗ C.
First let n = 2k be even. In this case, the group MU2k−1 ⊗ C vanishes. Hence
the cokernel of α is trivial and MUnD(p)(pt) is isomorphic to ker(β). The groups
Hn+2j(pt; Ω∗≥p+j(π2jMU ⊗C)) vanish if n+ 2j 6= 0 or if p+ j > 0. Hence if p > 0
or k < p, we see that MU2k

D (p)(pt) is isomorphic to the kernel of the inclusion
MU2k →MU2k ⊗ C and hence vanishes.

If p ≤ 0, then H2k(pt; Ω∗≥p(π2∗MU ⊗C)) is isomorphic to MU2k ⊗C for k ≥ p
and vanishes otherwise. Hence, for k ≥ p, MU2k

D (p)(pt) is isomorphic to the kernel
of the map

MU2k ⊕MU2k ⊗ C→MU2k ⊗ C
and hence

MU2k
D (p)(pt) ∼= MU2k

for k ≥ p. In particular, this implies that the group MU2k
D (p)(pt) vanishes for

k > 0.
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We remark that, for all p ∈ Z, we have

MU2p
D (p)(pt) ∼= MU2p.

For n = 2k + 1 odd, the group ker(β) is trivial, since the source of β vanishes.

So MU2k+1
D (p)(pt) is isomorphic to the cokernel of α. For p > 0, using the identi-

fications above, we get for all k ∈ Z

MU2k+1
D (p)(pt) ∼= (MU2k ⊗ C)/MU2k ∼= MU2k ⊗ C/Z.

In particular, this implies that the group MU2k+1
D (p)(pt) vanishes for k > 0.

For p ≤ 0 and k < p, we still get

MU2k+1
D (p)(pt) ∼= MU2k ⊗ C/Z.

For p ≤ 0 and k ≥ p, we have

MU2k+1
D (p)(pt) ∼= (MU2k ⊗ C)/(MU2k ⊕MU2k ⊗ C) = 0.

6. Hodge filtered cohomology for complex algebraic varieties

We now turn to the case of algebraic varieties and, as described in the intro-
duction, introduce a variation of our construction which takes into account mixed
Hodge structures.

6.1. From the analytic to the Nisnevich topology. To transfer the theory of
Hodge filtered cohomology to algebraic varieties, we have to discuss the relationship
between the analytic site and the algebraic site. We will use the term complex
variety for a reduced separated scheme of finite type over C. Let SmC,Nis be the
site of smooth complex algebraic varieties with the Nisnevich topology.

We recall that a distinguished square in SmC,Nis is a cartesian square of the form

(22) U ×X V //

��

V

p

��
U

j // X

such that p is an étale morphism, j is an open embedding and p−1(X−U)→ X−U
is an isomorphism, where the closed subsets are equipped with the reduced induced
structure. A square of the form (22) is an example of a covering in the Nisnevich
topology. Moreover, the Nisnevich topology is generated by coverings of this form
(see [24, §3.1]).

For X ∈ SmC,Nis, we denote by Xan the associated complex manifold. This
defines a functor

f−1 : SmC →ManC, X 7→ f−1(X) := Xan.

Composition with f−1 induces a functor

f∗ : SpΣ(sPre∗(ManC))→ SpΣ(sPre∗(SmC,Nis))

of the corresponding categories of presheaves of symmetric spectra. It is the right
adjoint of a functor

f∗ : SpΣ(sPre∗(SmC,Nis))→ SpΣ(sPre∗(ManC)).

The pair of functors (f∗, f∗) forms a Quillen pair of adjoints between the model cat-

egories of monoids in SpΣ(sPre∗(SmC,Nis)) and SpΣ(sPre∗(ManC)) respectively.
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We let Rf∗ be the right derived functor. It is given by the composition f−1 ◦Ran

of f−1 with a fibrant replacement functor Ran in the model structure of monoids
in SpΣ(sPre∗(ManC)). Since representable objects are cofibrant, the adjointness
implies the following fact.

Proposition 6.1. Let X be a smooth complex algebraic variety and let E be a
presheaf of symmetric spectra on the site ManC. Then there is a natural isomor-
phism

HomhoSpΣ(sPre∗(ManC))(Σ
∞
+ (Xan),ΣnE) ∼= HomhoSpΣ(sPre∗(SmC,Nis))(Σ

∞
+ (X),ΣnRf∗E).

Example 6.2. In particular, if E ∈ SpΣ is a symmetric spectrum, we have a
natural isomorphism

En(Xan) ∼= HomhoSpΣ(sPre∗(SmC,Nis))(Σ
∞
+ (X),ΣnRf∗E).

6.2. Differential forms with logarithmic poles. For a smooth complex variety
X, by Hironaka’s theorem [16], there exists a smooth complete variety X over C
with a closed embedding j : X ↪→ X such that D := X − X is a normal crossing
divisor. Let Ω1

X
〈D〉 be the locally free sub-module of j∗Ω

1
X generated by Ω1

X and

by dzi
zi

where zi is a local equation for an irreducible local component of D. The

sheaf Ωp
X
〈D〉 of meromorphic p-forms on X with at most logarithmic poles along D

is defined to be the locally free sub-sheaf
∧p

Ω1
X
〈D〉 of j∗Ω

p

X
. The Hodge filtration

F on the complex of sheaves Ω∗
X
〈D〉 is defined to be the filtration

F pΩ∗
X
〈D〉 = Ω∗≥p

X
〈D〉.

The filtration on the complex of logarithmic forms allows one to define a Hodge
filtration on the complex cohomology of X as

(23) F pHn(X;C) := Im (Hn(X; Ω∗≥p
X
〈D〉)→ Hn(X; Ω∗

X
〈D〉) ∼= Hn(X;C)).

It is a theorem of Deligne’s [6, Théorème 3.2.5 and Corollaire 3.2.13] that for smooth
complex algebraic varieties, the homomorphism

Hn(X; Ω∗≥p
X
〈D〉)→ Hn(X; Ω∗

X
〈D〉)

is injective and the image is independent of the choice of X. In particular, the map
(23) induces an isomorphism

(24) Hn(X; Ω∗≥p
X
〈D〉) ∼= F pHn(X;C) ⊂ Hn(X;C).

Following Beilinson [1, §1.6] we now show that the Hodge filtration F pHn(X,C)
is represented by a map of symmetric spectra. More precisely, we construct a
sequence of complexes of presheaves

· · · → Aplog → Ap+1
log → · · ·

on SmC,Nis equipped with a weak equivalence

colim
p→∞

HAplog ' Rf∗HC,

and having the property that for all X ∈ SmC, the map

HomhoSpΣ(sPre∗)(SmC,Nis)(Σ
∞
+ X,Σ

nHAplog)→ HomhoSpΣ(sPre∗)(SmC,Nis)(Σ
∞
+ X,Σ

nRf∗HC)

induces an isomorphism

HomhoSpΣ(sPre∗)(SmC,Nis)(Σ
∞
+ X,Σ

nHAplog)→ F pHn(X,C).
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We consider the category SmC whose objects are smooth compactifications, i.e.
pairs X ⊂ X consisting of a smooth variety X embedded as an open subset of a
smooth complete variety X and having the property that X −X is a divisor with
normal crossings. A map from X ⊂ X to Y ⊂ Y is a commutative diagram

X //

��

X

��
Y // Y .

The complexes Ω∗≥p
X
〈D〉 form a complex of presheaves Ω∗≥p〈D〉 on SmC. Let

Ω∗≥p
X
〈D〉 → Ap

X
〈D〉

be any resolution by cohomologically trivial sheaves which is functorial in X, and
let

Ω∗≥p〈D〉 → Ap〈D〉
be the associated map of complexes of presheaves. For example, Ap〈D〉 could be
the Godemont resolution, or the logarithmic Dolbeault resolution ([25, §8]). The
Ap〈D〉 are double complexes, though we will only consider their total complexes.
They may be chosen in such a way as to fit into a commutative diagram

Ω∗≥p−1〈D〉 //

��

Ω∗≥p〈D〉

��
Ap−1〈D〉 // Ap〈D〉

We define the presheaf Aplog of complexes on SmC by

Aplog : X 7→ colim
C(X)

Ap〈D〉(X)

where the colimit is taken over the directed category C(X) of all smooth compact-

ifications X of X. Let HAplog ∈ SpΣ(sPre∗(SmC,Nis)) be the associated Eilenberg-
MacLane spectrum.

For X ∈ SmC, let π(Σ∞+ X,Σ
nHAplog) denote the set of homotopy classes of

maps. The Dold-Kan correspondence implies that there is a natural bijection

π(Σ∞+ X,Σ
nHAplog) ∼= Hn(Aplog(X)).

As in [5, Theorem 4] it follows from Deligne’s isomorphism (24) and the fact that
Ap〈D〉 is pseudo-flasque that we have a natural isomorphism

Hn(Ap〈D〉(X)) ∼= F pHn(X;C).

Since the colimit defining Aplog(X) is filtered, this implies that the natural map

Hn(Aplog(X))→ F pHn(X;C)

is an isomorphism too. Hence we obtain a natural isomorphism

π(Σ∞+ X,Σ
nHAplog) ∼= F pHn(X;C).

The functor X 7→ H∗(X;C) satisfies descent for the Nisnevich topology in the sense
that every distinguished square (22) induces a long exact Mayer-Vietoris sequence.
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By [6, Théorème 1.2.10 and Corollaire 3.2.13], the Hodge filtration respects this
sequence and yields a long exact sequence

. . .→ F pHq−1(X;C)→ F pHq(U×XV ;C)→ F pHq(U ;C)⊕F pHq(V ;C)→ F pHq(X;C)→ . . .

This allows us to deduce from the Verdier hypercovering theorem that the natural
map

π(Σ∞+ X,Σ
nHAplog)→ HomhoSpΣ(sPre∗(SmC,Nis))(Σ

∞
+ X,Σ

nHAplog)

is a bijection (see [29, Theorem 3.5] for more details). This implies the following
result.

Proposition 6.3. For every X, and every n ≥ 0, there is a natural isomorphism

HomhoSpΣ(sPre∗(SmC,Nis))(Σ
∞
+ X,Σ

nHAplog) ∼= F pHn(X;C).

6.3. Generalized Deligne-Beilinson cohomology for smooth complex al-
gebraic varieties. Let A∗ =

⊕
Ap,q be the presheaf given by the functorial res-

olution of Ω∗ compatible with the resolution of Ω≥p〈D〉 chosen in the previous
subsection. For an evenly graded C-algebra V2∗, let HA∗(V2∗) denote the presheaf
of commutative S-algebras

HA∗(V2∗) =
∨
j

Σ2jHA∗(V2j) =
∨
j

Σ2jHA∗ ⊗ V2j .

Moreover, let HAp+∗log (V2∗) be the presheaf of commutative S-algebras

HAp+∗log (V2∗) =
∨
j

Σ2jHAp+jlog (V2j),

where we denote
HAp+jlog (V2j) = HAp+jlog ⊗ V2j .

Any choice of resolution Ap〈D〉 of the complexes of logarithmic forms is equipped
with a natural morphism of presheaves of symmetric spectra

(25) HAp+∗log (V2∗)→ Rf∗HA
∗(V2∗).

Let E be a rationally even spectrum in SpΣ. Let

τE : E → H(π2∗E ⊗ C)

be the map (7). It induces a map

Rf∗E → Rf∗H(π2∗E ⊗ C)

in SpΣ(sPre∗(SmC,Nis)). Composition with the maps

Rf∗H(π2∗E ⊗ C)→ Rf∗H(A∗(π2∗E ⊗ C))

defines a map in SpΣ(sPre∗(SmC,Nis))

Rf∗E → Rf∗H(A∗(π2∗E ⊗ C)).

We define the presheaf of symmetric spectra Elog(p) by the homotopy cartesian
square

(26) Elog(p)

��

// Rf∗E

��
H(Ap+∗log (π2∗E ⊗ C)) // Rf∗H(A∗(π2∗E ⊗ C)).
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Definition 6.4. For a presheaf of symmetric spectra X on SmC,Nis, we define the
logarithmic Hodge filtered E-cohomology groups to be

Elog(p)n(X ) := HomhoSpΣ(sPre∗)(X ,Σ
nElog(p)).

For a smooth complex algebraic variety X, we denote the E-cohomology group
En(Xan) of the associated complex manifold Xan by En(X). Moreover, we use the
notation

F p+∗H∗(X;π2∗E ⊗ C)n =
⊕
j

F p+jHn+2j(X;π2jE ⊗ C)

for the sum of Hodge filtered cohomology groups.

Proposition 6.5. Hodge filtered cohomology groups sit in long exact sequences

. . .→ H∗(X;π2∗E ⊗ C)n−1 → Enlog(p)(X)→
→ En(X)⊕ F p+∗H∗(X;π2∗E ⊗ C)n → H∗(X;π2∗E ⊗ C)n → . . .

and
. . .→ En−1(X)⊗ C → Enlog(p)(X)→

→ En(X)⊕ F p+∗H∗(X;π2∗E ⊗ C)n → En(X)⊗ C→ . . . .

Proof. As before, this is a consequence of the definition of Elog(p) as a homotopy
pullback. The new ingredients are the identifications of E-cohomology groups in
Proposition 6.1 and of the Hodge filtered cohomology groups in (6.3). �

Remark 6.6. If X is a smooth projective complex variety, the new Hodge filtered
cohomology groups Enlog(p)(X) of Definition 6.4 are canonically isomorphic to the

groups EnD(p)(Xan) of Definition 4.2.

6.4. A1-homotopy invariance.

Theorem 6.7. Let E be a rationally even ring spectrum and let X be a smooth
variety over C. The projection π : X × A1 → X induces an isomorphism

π∗ : Enlog(p)(X)
∼=−→ Enlog(p)(X × A1).

Proof. This can be deduced from the long exact sequence and the A1-invariance
of the individual terms. The only non-trivial fact is the A1-invariance of the
F pH∗(−;C) which follows from [6, Théorème 1.2.10]. �

Proposition 6.8. Let E be a rationally even ring spectrum. The functor

X 7→ E∗log(∗)(X)

on SmC,Nis satisfies Nisnevich descent in the sense that a distinguished square in
the Nisnevich topology induces a long exact Mayer-Vietoris sequence.

Proof. We have already remarked for the proof of Proposition 6.3 that a distin-
guished square (22) induces a long exact Mayer-Vietoris sequence for the Hodge
filtered cohomology groups F p(X;C). Since the functor f−1 sends distinguished
squares to covering squares in the analytic topology, a square of the form (22) in-
duces a long exact Mayer-Vietoris sequence for E-cohomology groups and de Rham
cohomology groups too. The exact sequence of Proposition 6.5 now shows that Elog

has the desired property as well. �

As a consequence of Theorem 6.7 and Proposition 6.8, we get the following result.
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Corollary 6.9. Let E be a rationally even ring spectrum. The functor E∗log(∗)(−)

induces a functor on the S1-stable A1-homotopy category of smooth varieties over
C.

7. Generalized Deligne-Beilinson cobordism for complex algebraic
varieties

In this last section, we apply the refined methods for algebraic complex varieties
to the case E = MU . The advantage of the logarithmic theory MUlog is that it has
several topological properties that would hold for MUD only for compact manifolds.
In particular, we will show that MUlog satisfies a projective bundle formula and is
equipped with transfer maps for projective morphisms.

Recall our choice of a map∨
p∈Z

MU →
∨
p∈Z

H(π2∗MU ⊗ C)

of commutative S-algebras. We can consider this map as a map of presheaves of
commutative S-algebras on SmC,Nis. Composition with the map

H(π2∗MU ⊗ C)→ H(A∗(π2∗MU ⊗ C))

and application of Rf∗ defines a map of presheaves of commutative S-algebras∨
p∈Z

Rf∗MU →
∨
p∈Z

Rf∗H(A∗(π2∗MU ⊗ C)).

Moreover, since π2∗MU ⊗ C is a C-algebra, we obtain a natural analogue of map
(25) as a morphism of presheaves of commutative S-algebras∨

p∈Z
H(Ap+∗log (π2∗MU ⊗ C))→

∨
p∈Z

Rf∗H(A∗(π2∗MU ⊗ C)).

We define the presheaf of commutative S-algebras in SpΣ(sPre∗(SmC,Nis))

(27)
∨
p∈Z

MUlog(p)

by the homotopy cartesian square

(28)
∨
p∈Z

MUlog(p) //

��

∨
p∈Z

Rf∗MU

��∨
p∈Z

H(Ap+∗log (π2∗MU ⊗ C)) //
∨
p∈Z

Rf∗H(A∗(π2∗MU ⊗ C))

Definition 7.1. For a presheaf of symmetric spectra X on SmC,Nis, we define the
logarithmic Hodge filtered complex bordism groups to be

MUlog(p)n(X ) := HomhoSpΣ(sPre∗(SmC,Nis))(X ,Σ
nMUlog(p)).

Moreover, since (27) is a presheaf of commutative S-algebras, there is a multi-
plicative structure on MU∗log(∗).
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Theorem 7.2. Let X be a smooth complex variety. There is a multiplication

MUnlog(p)(X)⊗MUmlog(q)(X)→MUn+m
log (p+ q)(X)

which is graded-commutative in the sense that for α ∈MUnlog(p)(X), β ∈MUmlog(q)(X)
we have

αβ = (−1)n+mβα ∈MUn+m
log (p+ q)(X).

This provides

MU∗log(∗)(X) :=
⊕
n,p

MUnlog(p)(X)

with the structure of a graded-commutative ring.

Remark 7.3. For a smooth complex variety X, the map MU → HZ induces
a homomorphism from logarithmic Hodge filtered cobordism to Deligne-Beilinson
cohomology which is compatible with the product structures.

7.1. Projective bundle formula. Let X be a smooth variety over C. We would
like to define Chern classes

cp(V ) = c
MUlog
p (V ) ∈MU2p

log(p)(X)

for vector bundles V → X of rank r over X. These classes should be functorial
with respect to pullbacks and compatible with the Chern classes in the topological

theory MU2∗(X), i.e. c
MUlog
p (V ) should be mapped to the topological Chern classes

of V under the map

MU2p
log(p)(X)→MU2p(X).

To define Chern classes we follow the outline of Beilinson in [1, §1.7] for Deligne
cohomology together with the general theory of classifying spaces in the homotopy
category of simplicial presheaves on SmC,Nis in [24, §4.1]. The following result is a
consequence of [24, Proposition 4.1.15].

Proposition 7.4. Let X be a smooth complex variety. The set of isomorphism
classes of vector bundles of rank r on X is in bijection with the set of maps in the
homotopy category of simplicial presheaves from X to BGLr. The correspondence
sends a map f : X → BGLr to the isomorphism class of the bundle f∗EGLr of the
pullback of the universal bundle EGLr over BGLr.

The second ingredient is the following fact that the Hodge filtered cobordism of
the classifying space BGLr(C) is just given by complex cobordism.

Lemma 7.5. For every p ≥ 0, the homomorphism

MU2p
log(p)(BGLr)→MU2p(BGLr(C))

induced by the map of presheaves of symmetric spectra MUlog(p) → MU is an
isomorphism.

Proof. This follows from Proposition 6.5 and the following two facts. On the one
hand, the odd dimensional cohomology of BGLr(C) vanishes, i.e.

H2p−1+2j(BGLr(C);π2jMU ⊗ C) = 0.

On the other hand, the even cohomology of BGLr(C) is generated by Chern classes
which have pure weight (p, p) (see [7]). This implies

H2p+2j(BGLr; Ω∗≥p+j(π2jMU ⊗ C)) ∼= H2p+2j(BGLr(C);π2jMU ⊗ C).
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Now one can read off the assertion from the first long exact sequence in Proposition
6.5. �

Now let V be a vector bundle of rank r over X. By Proposition 7.4, there is
a unique map in the homotopy category of simplicial presheaves f : X → BGLr
corresponding to V over X. Hence we obtain a pullback map

MU∗log(∗)(BGLr)→MU∗log(∗)(X)

corresponding to V . The isomorphism of Lemma 7.5 and the Chern classes of
the universal bundle over BGLr in complex cobordism provide Chern classes of
the universal bundle in

⊕
pMU2p

log(p)(BGLr). The above pullback map then de-

fines unique Chern classes cp(V ) ∈ MUlog(p)2p(X). This uniqueness implies that
these Chern classes satisfy all the properties they satisfy in topological cobordism.
Moreover, there is a projective bundle formula.

Theorem 7.6. Let X be a smooth complex variety and V a vector bundle of rank
r over X with projective bundle P(V ) → X and tautological quotient line bundle
OV (1). Let ξ = c1(OV (1)) be the first Chern class of OV (1) in MU2

log(1)(P(V )).
There are natural isomorphisms

r−1⊕
i=0

ξiMUn−2i
log (p− i)(X)→MUnlog(p)(P(V ))

which make MU∗log(∗)(P(V )) := ⊕p,nMUnlog(p)(P(V )) into a free MU∗log(∗)(X)-

module with basis 1, ξ, . . . , ξr−1.

Proof. This follows from Proposition 6.5. For each of the groups in the long exact
sequence we have isomorphisms

MUn−1(P(V )) ∼=
⊕

0≤i≤r−1

ξiMUMUn−1−2i(X),

H∗(P(V );V2∗)
n ∼=

⊕
0≤i≤r−1

ξiHH
∗(X;V2∗)

n−2i,

F p+∗H∗(P(V );V2∗)
n ∼=

⊕
0≤i≤r−1

ξiHF
p−i+∗H∗(X;V2∗)

2p−2i.

Since the choices of the bases elements are compatible and since the above long
exact sequence is compatible with multiplication and direct sums, we deduce that
each MUlog(p)n(P(V )) is a free MU2∗

log(∗)(X)-module with basis 1, ξ, . . . , ξr−1. �

Remark 7.7. Since the Grothendieck formula holds for Chern classes in complex
cobordism, Theorem 7.6 and our definition of the cp(V ) imply that the Grothendieck
formula

r∑
p=0

(−1)pcp(V )ξr−p = 0

also holds for the Chern classes cp(V ) ∈MU2p
log(p)(X).

Proposition 7.8. Chern classes in Hodge filtered complex cobordism are compatible
with Chern classes in complex cobordism and in Deligne cohomology and they are
functorial under pullbacks, i.e. for any morphism f : X → Y of smooth projective
complex schemes, one has

f∗cp(V ) = cp(f
∗V ).
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Proposition 7.9. The presheaf of symmetric spectra MUlog(∗) =
∨
p∈ZMUlog(p)

can be equipped with the structure of a motivic spectrum over C. In particular, the
functor MU∗log(∗)(−) induces a functor on the motivic stable A1-homotopy category
of smooth varieties over C.

Proof. Based on Proposition 6.9, it remains to show that MUlog(∗) defines a P1-
spectrum (not only with respect to S1-suspension). But any choice of lift of the
first Chern class c1(OP1) ∈MU2

log(1) defines a suspension map

P1 ∧MUlog(p)→MUlog(1) ∧MUlog(p)→MUlog(p+ 1)

where the right hand map is given by the ring structure on MUlog(∗). �

7.2. Transfer maps. Let f : Y → X be a projective morphism between smooth
quasi-projective complex varieties of relative codimension d. In this section we will
define a transfer or pushforward map

f∗ : MU∗log(∗)(Y )→MU∗+2d
log (∗+ d)(X).

In order to construct f∗, we apply the machinery developed by Panin in [26] and
[27]. For the functor

X 7→MU∗log(∗)(X) :=
⊕
n,p

MUnlog(p)(X)

defines an oriented ring cohomology theory on the category of smooth quasi-projective
complex varieties in the sense of [26, §2]. The existence of an exact localization se-
quence follows as in Proposition 4.7. The excision property follows from the fact
that MUnlog(p)(−) satisfies Nisnevich descent as shown in Proposition 6.8. The

A1-invariance is the content of Theorem 6.7. This shows that the properties of a
cohomology theory in the sense of [26, Definition 2.1] are satisfied. The fact that
MU∗log(∗)(−) is a ring cohomology theory follows from Theorem 7.2. Finally, the
projective bundle formula of Theorem 7.6 yields a Chern structure and hence an
orientation on MUlog.

Then by [27, Theorem 2.5] and [26, Theorem 3.35], given a projective morphism
f : Y → X between smooth quasi-projective complex varieties of relative codimen-
sion d, there is a homomorphism

f∗ : MU∗log(∗)(Y )→MU∗+2d
log (∗+ d)(X).

The construction of f∗ is compatible with the Chern structure. In particular, for
a smooth divisor

i : D ↪→ X,

the pushforward i∗ satisfies

i∗(1) = c1(OX(D)).

Let

MU2∗
log(∗)(X) :=

⊕
p

MU2p
log(p)(X)

be the sum of the diagonal Hodge filtered cobordism groups. The existence of the
transfer structure implies the following result.
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Theorem 7.10. For every smooth quasi-projective complex variety X, there is a
natural ring homomorphism

ϕMUlog
: Ω∗(X)→MU2∗

log(∗)(X)

from algebraic to Hodge filtered cobordism.

Proof. By [27], the pushforward provides the functor X 7→ MU2∗
log(∗)(X) with the

structure of an oriented Borel-Moore cohomology theory on the category of smooth
quasi-projective complex varieties in the sense of [23]. Hence, by [23], sending the
class [Y → X] of a projective morphism f : Y → X of relative codimension d, with
Y smooth and quasi-projective over C, to f∗(1Y ) ∈MU2d

log(d)(X), defines a unique
morphism of oriented Borel-Moore cohomology theories

Ω∗(X)→MU2∗
log(∗)(X).

�

Corollary 7.11. Let X be a smooth quasi-projective algebraic variety over C.
There is a natural ring homomorphism

CH∗X
clMUlog−−−−−→MU2∗

log(∗)(X)⊗MU∗ Z

from the Chow ring of algebraic cycles on X modulo rational equivalence such that
the composition with the canonical map

MU2∗
log(∗)(X)⊗MU∗ Z

θD−−→ H2∗
D (X;Z(∗))

is the cycle class map clHD to Deligne-Beilinson cohomology. This map clMUlog
is

natural with respect to pullbacks and with respect to push-forwards along projective
morphisms.

Proof. By [23, Theorem 1.2.19], there is a natural isomorphism

CH∗ ∼= Ω∗ ⊗L∗ Z

of oriented cohomology theories on SmC. For a smooth quasi-projective complex
variety X, it is defined by sending the class of an irreducible subset Z ⊂ X to
the algebraic cobordism class [Z̃ → X] of a resolution of singularities Z̃ → Z of
Z. This map is well-defined and compatible with the additional structures on both
sides (see also [23, §4.5]). The transfer structure on MUlog and the identification
L∗ ∼= MU2∗ induce a homomorphism of rings

Ω∗(X)⊗L∗ Z→MU2∗
log(∗)(X)⊗MU∗ Z.

Hence we obtain a composed map

CH∗(X)→ Ω∗(X)⊗L∗ Z→MU2∗
log(∗)(X)⊗MU∗ Z.

Since both maps are ring homomorphisms and compatible with pullbacks and push-
forwards along projective morphisms, this proves the theorem. �

Let Ker p(ϕMU )(X) be the kernel of the natural map ϕMU : Ωp(X)→MU2p(X).

Note that the image of ϕMU is actually contained in the subgroup Hdg2p
MU (X).

Then the following result is an immediate consequence of the theorem.
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Corollary 7.12. Let X be a smooth projective algebraic variety over C. Then there
is a functorial commutative diagram of homomorphisms

(29) Ker p(ϕMU )(X)

AJMU
��

// Ωp(X)

ϕMUlog

��

ϕMU

''
0 // J2p−1

MU (X) // MU2p
log(p)(X) // Hdg2p

MU (X) // 0.

Remark 7.13. We think of the natural homomorphism

AJMU : Ker p(ϕMU )(X)→ J2p−1
MU (X)

as a generalization of Griffiths’ Abel-Jacobi map for algebraic cycles which are
homologous to zero.

Remark 7.14. The construction of Chern classes and of the transfer map do not
depend on the fact that we work with the Thom spectrum MU . The required data
would be a rationally even ring spectrum E ∈ SpΣ representing a complex oriented
cohomology theory, together with a choice of ring map

E ∧HC→ H(π2∗E ⊗ C)

as for the case of MU in (27).
Any such data yields an oriented cohomology theory E∗log(∗) on SmC. It is

equipped with transfer maps

E∗log(∗)(Y )→ E∗+2d
log (∗+ d)(X)

for any projective morphism Y → X of relative codimension d between smooth
quasi-projective complex varieties. Moreover, this transfer structure induces a nat-
ural map

Ω∗(X)→ E2∗
log(∗)(X)

for every X ∈ SmC.
The only reason why we worked out the example of E = MU is that we showed

that there exists a choice of multiplicative map

MU ∧HC→ H(π2∗MU ⊗ C)

and that we are interested in applications based on complex cobordism. But there
are of course plenty of other interesting examples.

7.3. Examples. We now offer some simple examples of elements in algebraic cobor-
dism that map to zero in both the Chow ring and in topological cobordism, showing
that our invariant is finer than the combination of these two.

Suppose that X is a variety, and D is an element of Ωd(X) with the property
ϕMU (D) = 0 ∈ MU2d(X). By the work of Levine and Morel [23, Theorem 4.5.1],
we know that the kernel of

ϕCH : Ω∗(X)→ CH∗(X)

is exactly the ideal

I∗(X) := Ω∗(X) · L∗≥1.

So we can modify D to get an element in the kernel of ϕCH by multiplying by, say,
the class γ ∈ L1 of P1 → SpecC in Ω1(C) = L1. To get something interesting we
would like to know that this product is non-zero.
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Since ϕMU (D) = 0, the cycle class underlying D is homologous to zero, and
so both the Griffiths invariant AJ(D) ∈ J2d−1(X) and AJMU (D) are defined. If
Griffiths’ invariant is not a torsion element, then it is still non-zero in J2d−1(X)⊗Q,

and so the image of AJMU (D) in J2d−1
MU (X)⊗Q is non-zero. By Remark 4.12,⊕

p

J2p−1
MU (X)⊗Q

is a flat π∗MU -module, and so the class γ · D is also non-zero in J2d+1
MU (X) ⊗ Q

and so must be non-zero. Thus we can construct an element γ · D ∈ Ωd+1(X)
with ϕMUlog

(γ · D) non-zero but with ϕMU (γ · D) = 0 and ϕCH(γ · D) = 0 by

finding an element D ∈ Ωd(X) with ϕMU (D) = 0 and whose image under Griffiths’
Abel-Jacobi map is not a torsion element. We describe two examples below.

Example 7.15. Let X be a smooth complex curve. In this case the canonical
map MU2(X) → H2(X;Z) is an isomorphism, so any divisor D of degree zero on
X automatically has the property that φMU (D) = 0. Since the Abel-Jacobi map
from divisors of degree zero to J1(X) is surjective, when the genus of X is greater
than or equal to 1, there exist divisors D of degree zero with AJ(D) a non-torsion
element.

A more interesting example is given by one of Griffiths’ famous results.

Example 7.16. Let X ⊂ P4 be a general smooth quintic complex hypersurface.
In [15, §§13+14] Griffiths showed that X contains a finite number n > 1 of lines
L1, . . . , Ln such that, for each i 6= j, the image AJ(Li−Lj) under the Abel-Jacobi
map is a non-torsion element in J3(X) (cf. also [36, §8.2.3]). By the Lefschetz
theorem on hyperplane sections, the map X → P4 induces an isomorphism of π2,
so the inclusion of the lines Li and Li into X are homotopic. This means that
they define the same elements of MU2(X) and so by Poincaré duality, we have that
φMU (Li − Lj) = 0.
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[7] P. Deligne, Théorie de Hodge III, Pub. Math. IHES 44 (1974), 5-77.
[8] D. Dugger, Universal homotopy theories, Adv. Math. 164 (2001), 144-176.

[9] D. Dugger, S. Hollander, D. C. Isaksen, Hypercovers and simplicial presheaves, Math.

Proc. Cambridge Philos. Soc. 136 (2004), no. 1, 9-51.
[10] D. Dugger, D. C. Isaksen, Topological hypercovers and A1-realizations, Math. Z. 246

(2004), 667-689.

[11] D. Dugger, B. Shipley, Topological equivalences for differential graded algebras, Adv.
Math. 212 (2007), 37-61.



HODGE FILTERED COMPLEX BORDISM 37

[12] F. El Zein, S. Zucker, Extendability of normal functions associated to algebraic cycles,

in: Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 269-288,

Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984.
[13] H. Esnault, E. Viehweg, Deligne-Beilinson cohomology, in: Beilinson’s conjectures on

special values of L-functions, 43-91, Perspect. Math., 4, Academic Press, Boston, MA,

1988.
[14] H. Esnault, Characteristic classes of flat bundles, II, K-Theory 6 (1992), 45-56.

[15] P. A. Griffiths, On the periods of certain rational integrals, I, II. Ann. of Math. (2) 90

(1969), 460-495; ibid. (2) 90 1969, 496-541.
[16] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic

zero I, II. Ann. of Math. (2) 79 (1964), 109-203; ibid. (2) 79 (1964), 205-326.

[17] M. J. Hopkins, I. M. Singer, Quadratic functions in geometry, topology, and M -theory, J.
Differential Geometry 70 (2005), 329-452.

[18] M. Hovey, B. Shipley, J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149-
208.

[19] M. Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl.

Algebra 165 (2001), 63-127.
[20] J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35-87.

[21] J. F. Jardine, Presheaves of symmetric spectra, J. Pure Appl. Algebra 150 (2000), 137-

154.
[22] J. F. Jardine, The Verdier hypercovering theorem, Canad. Math. Bull. 55 (2012), 319-328.

[23] M. Levine, F. Morel, Algebraic Cobordism, Springer Monographs in Mathematics,

Springer, 2007.
[24] F. Morel, V. Voevodsky, A1-homotopy theory of schemes, Publ. IHES 90 (1999), 45-143.
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