Norwegian University of Science and Technology Department of Mathematical Sciences MA3403 Algebraic Topology Fall 2018

Exercise set 2

1 Let $f \in C((X, A), (Y, B))$ be a map of pairs.

- **a)** Show that, for every $n \ge 0$, f induces a homomorphism $H_n(X, A) \to H_n(Y, B)$.
- **b**) Show that the connecting homomorphisms fit into a commutive diagram

$$\begin{array}{c} H_n(X,A) \xrightarrow{H_n(f)} H_n(Y,B) \\ \downarrow \\ \partial \\ \\ H_{n-1}(A) \xrightarrow{H_{n-1}(f_{|A|})} H_{n-1}(B). \end{array}$$

2 Let X be a nonempty topological space. Recall that if ω is a path on X, i.e., a continuous map $\omega \colon [0,1] \to X$, then we define an associated 1-simplex σ_{ω} by

$$\sigma_{\omega}(t_0, t_1) := \omega(1 - t_0) = \omega(t_1) \text{ for } t_0 + t_1 = 1, 0 \le t_0, t_1 \le 1.$$

- a) Show that if ω is a constant path, then σ_{ω} is a boundary.
- **b)** Let γ_1 and γ_2 be paths in X, and let $\gamma := \gamma_1 * \gamma_2$ be the path given by first walking along γ_1 and then walking along γ_2 , i.e., the map

$$\gamma = \gamma_1 * \gamma_2 \colon [0,1] \to X, t \mapsto \begin{cases} \gamma_1(2t) & \text{for } 0 \le t \le \frac{1}{2} \\ \gamma_2(2t-1) & \text{for } \frac{1}{2} \le t \le 1. \end{cases}$$

Show that the 1-chain $\sigma_{\gamma} - \sigma_{\gamma_1} - \sigma_{\gamma_2}$ is a boundary.

For the next two exercises, recall that, given a topological space X and a subspace $A \subset X$, A is called a *retract* of X if there is a retraction $\rho: X \to A$, i.e., a continuous map $\rho: X \to A$ with $\rho_{|A} = \operatorname{id}_A$. Moreover, we can consider ρ also as a map $X \to X$ via the inclusion $X \xrightarrow{\rho} A \subset X$. If ρ is then in addition homotopic to the identity of X, then A is called a *deformation retract* of X.

- **3** For every $n \ge 2$, show that S^{n-1} is not a deformation retract of the unit disk D^n .
- 4 Show that if A is a retract of X then the map $H_n(i): H_n(A) \to H_n(X)$ induced by the inclusion $i: A \subset X$ is injective.
- **5** In this bonus exercise we show that the additivity axiom is needed only for *infinite* disjoint unions:

For two topological spaces X and Y, let $i_X \colon X \hookrightarrow X \sqcup Y$ and $i_Y \colon Y \hookrightarrow X \sqcup Y$ be the inclusions into the disjoint union of X and Y. Without referring to the additivity axiom show that the remaining Eilenberg-Steenrod axioms imply that the induced map

$$H_n(i_X) \oplus H_n(i_Y) \colon H_n(X) \oplus H_n(Y) \to H_n(X \sqcup Y)$$

is an isomorphism for every n. (Hint: You may want to apply the long exact sequence and excision with $U = X \subset X \sqcup Y$.)