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Solutions to exercise set 2

1 Let f ∈ C((X,A), (Y,B)) be a map of pairs.

a) Show that, for every n ≥ 0, f induces a homomorphism Hn(X,A)→ Hn(Y,B).
Solution: We would like to define Hn(f) again by sending an n-simplex σ on
X to the composite f ◦σ. To make sure that this map descends to quotients, we
need to check that Sn(A) is sent to Sn(B). But this follows immediately from
the requirement that f(A) ⊆ B:

∆n σ−→ A
f−→ B.

Then we extend this definition Z-linearly to become a homomorphism.

b) Show that the connecting homomorphisms fit into a commuative diagram

Hn(X,A)

∂
��

Hn(f)
// Hn(Y,B)

∂
��

Hn−1(A)
Hn−1(f|A)

// Hn−1(B).

Solution: We just calculate:

Hn−1(f|A)(∂([
∑
j

ajσj ])) = Hn−1(f|A)([∂
∑
j

ajσj ])

= Hn−1(f|A)([
∑
j

aj

n∑
i=0

(−1)iσj ◦ φni ])

= [
∑
j

aj

n∑
i=0

(−1)if|A ◦ (σj ◦ φni )]

= [
∑
j

aj

n∑
i=0

(−1)i(f|A ◦ σj) ◦ φni ]

= [∂
∑
j

aj(f ◦ σj)] = ∂[
∑
j

aj(f ◦ σj)]

= Hn(f)([
∑
j

ajσj ]).

2 Let X be a nonempty topological space. Recall that if ω is a path on X, i.e., a
continuous map ω : [0, 1]→ X, then we define an associated 1-simplex σω by

σω(t0, t1) := ω(1− t0) = ω(t1) for t0 + t1 = 1, 0 ≤ t0, t1 ≤ 1.
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a) Show that if ω is a constant path, then σω is a boundary.
Solution: Let x be the constant value of ω. Let α be the constant 2-simplex
with value x. Then

∂(α) = σω − σω + σω = σω.

b) Let γ1 and γ2 be paths in X, and let γ; = γ1 ∗ γ2 be the path given by first
walking along γ1 and then walking along γ2, i.e., the map

γ = γ1 ∗ γ2 : [0, 1]→ X, t 7→

{
γ1(2t) for 0 ≤ t ≤ 1

2

γ2(2t− 1) for 1
2 ≤ t ≤ 1.

Show that the 1-chain σγ − σγ1 − σγ2 is a boundary.

Solution: We define a 2-simplex β : ∆2 → X to be equal γ1 on the edge from
e0 to e1, to be equal γ2 on the edge from e1 to e2, and to be constant on the
lines perpendicular to the edge from e0 to e2. That implies that β equals γ on
the edge from e0 to e2:

The boundary of β is then given by

∂(β) = d0(β)− d1(β) + d2(β) = σγ2 − σγ + σγ1 .

It is a bit tedious to write down the correct formula for β with barycentric
coordinates. (At least I was to lazy to do it.) But if you insist on formulae,
let us simplify the task and assume that we place ∆2 into R2 with vertices
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e0 = (0, 0), e1 = (12 , 1) and e2 = (0, 1). With this special placement of ∆2 in
the plane, we can write β as

β(t0, t1) =

{
γ1(2t0) for 0 ≤ t0 ≤ 1

2

γ2(2t0 − 1) for 1
2 ≤ t0 ≤ 1.

3 For every n ≥ 2, show that Sn−1 is not a deformation retract of the unit disk Dn.

Solution: Let i : Sn−1 ↪→ Dn be the inclusion map. If Sn−1 was a deformation
retract of Dn, then there would be a map ρ : Dn → Sn−1 with ρ ◦ i = idSn−1 . By
functoriality, this would imply that we have a commutative diagram

Z ∼= Hn−1(S
n−1)

Hn(i) ))

idHn−1(S
n−1)

// Hn−1(S
n−1) ∼= Z

Hn−1(D
n) = 0.

Hn(ρ)

55

But the middle group Hn−1(D
n) is the zero group and the identity homomorphism

of Z cannot factor through a trivial group. This contradicts the existence of ρ.

4 Show that if A is a retract of X then the map Hn(i) : Hn(A) → Hn(X) induced by
the inclusion i : A ⊂ X is injective.

Solution: If A is a retract of X, there is continuous map ρ : X → A such that
ρ ◦ i = idA. Taking homology and functoriality yield

Hn(ρ) ◦Hn(i) = Hn(ρ ◦ i) = Hn(idA) = idHn(A).

Hence Hn(i) must be injective and Hn(ρ) must be surjective.

5 In this bonus exercise we show that the additivity axiom is needed only for infinite
disjoint unions:

For two topological spaces X and Y , let iX : X ↪→ X tY and iY : Y ↪→ X tY be the
inclusions into the disjoint union of X and Y . Without referring to the additivity
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axiom show that the remaining Eilenberg-Steenrod axioms imply that the induced
map

Hn(iX)⊕Hn(iY ) : Hn(X)⊕Hn(Y )→ Hn(X t Y )

is an isomorphism for every n. (Hint: You may want to apply the long exact sequence
and excision with U = X ⊂ X t Y .)

Solution: The axioms tell us that the pair (X tY,X) is equipped with a long exact
sequence

· · · ∂−→ Hn(X)
Hn(iX)−−−−→ Hn(X t Y )

Hn(j)−−−−→ Hn(X t Y,X)
∂−→ Hn−1(X)

∂−→ · · ·

The inclusion map kY : (Y, ∅) ↪→ (X t Y,X) is an excision map (with U = X). By
the excision axiom, kY induces an isomorphism

Hn(kY ) : Hn(X)
∼=−→ Hn(X t Y,X).

But we also know kY = j ◦ iY :

(Y, ∅)

iY %%

kY // (X t Y,X)

(X t Y, ∅).

j
77

By functoriality, this implies Hn(kY ) = Hn(j) ◦Hn(iY ). Since Hn(k) is an isomor-
phism, it has an inverse which fits into the sequence as

· · · ∂ // Hn(X)
Hn(iX)

// Hn(X t Y )
Hn(j)

// Hn(X t Y,X)

Hn(kY )−1

��

∂ // Hn−1(X)
Hn−1(iX)

// · · ·

Hn(Y )

Hn(iY )

hh

And we know

Hn(j) ◦ (Hn(iY ) ◦Hn(kY )−1) = idHn(XtY,X)

Thus Hn(j) is surjective and ∂ : Hn(X tY,X)→ Hn−1(X) is the zero map for every
n. By exactness of the sequence, this implies that Hn(i) is injective for every n.

Moreover, since the sequence is exact, it simplifies into a split short exact sequence

0→ Hn(X)
Hn(iX)−−−−→ Hn(X t Y )

Hn(j)−−−−→ Hn(X t Y,X)→ 0

with

Hn(X t Y ) ∼= Hn(iX)(Hn(X))⊕ (Hn(iY ) ◦Hn(kY )−1)(Hn(X t Y,X))
∼= Hn(iX)(Hn(X))⊕Hn(iY )(Hn(Y )).

(Note that we used Hn(kY )−1(Hn(X t Y,X)) = Hn(iY )(Hn(Y )) for the last step.)
Hence Hn(iX)⊕Hn(iY ) is an isomorphism.

Page 4 of 4


