

Recall the definition from Lecture 7: For $n \ge 1$, let $f: S^n \to S^n$ be a continuous map. The *degree of f*, denoted by $\deg(f)$, is the integer determined by $H_n(f)([\sigma]) = \deg(f) \cdot [\sigma]$ for a generator $[\sigma] \in H_n(S^n) \cong \mathbb{Z}$.

Since we know $H_{n+1}(D^{n+1}, S^n) \cong \mathbb{Z}$, we can apply the same definition also to selfmaps of the pair (D^{n+1}, S^n) : Let $f: (D^{n+1}, S^n) \to (D^{n+1}, S^n)$ be a continuous map of pairs. The *degree of* f, again denoted by deg(f), is the integer determined by $H_{n+1}(f)([\sigma]) = deg(f) \cdot [\sigma]$ for a generator $[\sigma] \in H_{n+1}(D^{n+1}, S^n) \cong \mathbb{Z}$.

- 1 Show that the degree has the following properties:
 - a) The identity has degree 1, i.e., deg(id) = 1.
 - **b)** The degree of a constant map is 0.
 - c) If $f, g: S^n \to S^n$ are two continuous maps, then $\deg(f \circ g) = \deg(f) \deg(g)$.
 - d) If f_0 and f_1 are homotopic, then $\deg(f_0) = \deg(f_1)$.
 - e) If $f: S^n \to S^n$ is a homotopy equivalence, then $\deg(f) = \pm 1$.
 - f) For $f: (D^{n+1}, S^n) \to (D^{n+1}, S^n)$, let $f_{|S^n|}$ denote the restriction of f to S^n . Then $\deg(f) = \deg(f_{|S^n|})$.
- 2 Let $a: S^n \to S^n$ be the antipodal map, i.e.,

 $a\colon (x_0, x_1, \ldots, x_n) \mapsto (-x_0, -x_1, \ldots, -x_n).$

- a) Show $\deg(a) = (-1)^{n+1}$. (Hint: Use the result from Lecture 7 on the degree of a reflection.)
- b) For n even, show that the antipodal map is not homotopic to the identity on S^n .

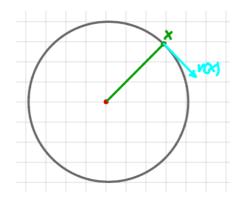
(Hint: Use what you have just learned in the previous exercises.)

(3) If f: Sⁿ → Sⁿ is a continuous map without fixed points, i.e., f(x) ≠ x for all x ∈ Sⁿ, then deg(f) = (-1)ⁿ⁺¹.
(Hint: Show that f is homotopic to the antipodal map.)

- **b)** If $f: S^n \to S^n$ is a continuous map without an antipodal point, i.e., $f(x) \neq -x$ for all $x \in S^n$, then $\deg(f) = 1$. (Hint: Show that f is homotopic to the identity map.)
- c) If n is even and $f: S^n \to S^n$ is any continuous map, show that there is a point $x \in S^n$ with $f(x) = \pm x$.

(Hint: Apply the previous observations.)

A vector field on S^n is a continuous map $v: S^n \to \mathbb{R}^{n+1}$ with $x \perp v(x)$ for all $x \in S^n$ (x and v(x) are orthogonal to each other).



4 Prove the following theorem: The *n*-dimensional sphere S^n admits a vector field v without zeros, i.e., $v(x) \neq 0$ for all $x \in S^n$, if and only if n is odd.

In particular, every vector field on S^2 must have a zero. This is often rephrased as: you cannot comb a hairy ball without leaving a bald spot.

(Hint: If n even, show that the assumption $v(x) \neq 0$ would allow to define a homotopy between the identity and the antipodal map. When you write down the homotopy maje sure the image lies on S^n .)