

MA3403 Algebraic Topology Fall 2018

Exercise set 4

- 1 Let X be a space,  $A \subset X$  be a subspace and  $j: (X, \emptyset) \hookrightarrow (X, A)$  be the inclusion map. Suppose A is contractible.
  - a) Show that the natural homomorphism  $H_n(j): H_n(X) \to H_n(X, A)$  is an isomorphism for all  $n \geq 2$ .
  - **b)** Show that  $H_n(j)$  is an isomorphism for all  $n \ge 1$  if A and X are path-connected.
  - c) For  $n \ge 1$ , let  $p \in S^n$  be a point. Show that  $S^n \setminus \{p\}$  is contractible.
  - d) For two distinct points  $p_1, p_2 \in S^n$ , is  $S^n \setminus \{p_1, p_2\}$  contractible?
- **2** Let  $f: S^n \to S^n$  be a continuous map. If f is not surjective, then  $\deg(f) = 0$ .
- 3 Our goal in this exercise is to construct a surjective map  $f: S^1 \to S^1$  with  $\deg(f) = 0$ .
  - a) Start with a map

$$g \colon S^1 \to S^1, \ e^{is} \mapsto \begin{cases} e^{-is} & \text{if } s \in [0,\pi) \\ e^{is} & \text{if } s \in [\pi, 2\pi). \end{cases}$$

Show that g has degree 0.

- b) Compose g with a another map such that the composition becomes a surjective map  $f: S^1 \to S^1$  of degree 0.
- 4 Let  $f: S^n \to S^n$  be a continuous map with  $\deg(f) = 0$ . Show that there must exist points  $x, y \in S^n$  with f(x) = x and f(y) = -y.
- 5 With this exercise we would like to refresh our memory on real projective spaces and connect it to questions on the existence of fixed points.

Recall from Lecture 2 that the real projective space  $\mathbb{R}P^k$  is defined to be the quotient of  $\mathbb{R}^{k+1} \setminus \{0\}$  under the equivalence relation  $x \sim \lambda x$  for  $\lambda \in \mathbb{R} \setminus \{0\}$ . The topology on  $\mathbb{R}P^k$  is the quotient topology.

a) Show that any invertible  $\mathbb{R}$ -linear map  $F \colon \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$  induces a continuous map  $f \colon \mathbb{R}P^k \to \mathbb{R}P^k$ .

- b) Show that for any invertible  $\mathbb{R}$ -linear map  $F \colon \mathbb{R}^{k+1} \to \mathbb{R}^{k+1}$  with an eigenvector, the induced map  $f \colon \mathbb{R}P^k \to \mathbb{R}P^k$  has a fixed point.
- c) Show that any continuous map  $f \colon \mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$  that is induced by an invertible  $\mathbb{R}$ -linear map  $F \colon \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$  has a fixed point.
- d) Show that there are continuous maps  $f: \mathbb{R}P^{2n-1} \to \mathbb{R}P^{2n-1}$  without fixed points.
- **6** Let  $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$  be a polynomial of degree  $n \ge 1$  with coefficients in  $\mathbb{C}$ . The goal of this exercise is to prove the Fundamental Theorem Algebra, i.e., we would like to show that there is a  $z \in \mathbb{C}$  with p(z) = 0.

We are going to show this as wollows:

Consider p as a map  $\mathbb{C} \to \mathbb{C}$ . Assume that p had no root. Then we can define a new map

$$\hat{p} \colon S^1 \to S^1, \ z \mapsto \frac{p(z)}{|p(z)|}$$

We are going to show that this assumption leads to a **contradiction**.

- a) Show that  $\hat{p}$  is homotopic to a constant map. What is the degree of  $\hat{p}$ ?
- **b**) Show that the map

$$H\colon S^1 \times (0,1] \to S^1, \ (z,t) \mapsto \frac{t^n p(\frac{z}{t})}{|t^n p(\frac{z}{t})|}$$

can be continuously extended to a map  $S^1 \times [0, 1]$ , i.e., analyze H(z, t) for  $t \to 0$ . What is the degree of  $\hat{p}$ ?

- c) Deduce that p must have a root, i.e., there must be a  $z \in \mathbb{C}$  with p(z) = 0.
- 7 In this exercise we continue our study of the Fundamental Theorem Algebra. Our goal is to connect the degree and the multiplicity of a root of a polynomial.
  - a) Let  $f: S^1 \to S^1$  be a continuous map. Show that if f can be extended to a map on  $D^2$ , i.e., if there is a continuous map  $F: D^2 \to S^1$  such that  $F_{|S^1} = f$ , then  $\deg(f) = 0$ .

Now let  $p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$  be a polynomial of degree  $n \ge 1$  with coefficients in  $\mathbb{C}$ .

b) Assume that p has no root z with  $|z| \leq 1$ . Then we can define the map

$$\hat{p} \colon S^1 \to S^1, \ z \mapsto \frac{p(z)}{|p(z)|}.$$

Show that the degree of  $\hat{p}$  is 0.

c) Assume that p has exactly one root  $z_0$  with  $|z_0| < 1$  and no root z with |z| = 1. Then we can define the map

$$\hat{p}: S^1 \to S^1, \ z \mapsto \frac{p(z)}{|p(z)|}.$$

Show that the degree of  $\hat{p}$  equals the multiplicity of the root  $z_0$ , i.e.,  $\deg(\hat{p}) = m$ where  $m \ge 0$  is the unique number such that  $p(z) = (z-z_0)^m q(z)$  with  $q(z_0) \ne 0$ .

Finally, we switch perspectives a bit. We know that the polynomial p satisfies  $\lim_{|z\to\infty|} |p(z)| = \infty$ . Hence we can extend the map  $p: \mathbb{C} \to \mathbb{C}$  to a map  $p: S^2 \to S^2$  where we think of  $S^2$  as the one-point-compactification of  $\mathbb{C} \cong \mathbb{R}^2$ . We are going to use the following fact: Let  $f_m: S^2 \to S^2$ ,  $z \mapsto z^m$ . The effect of  $H_2(f_m)$  as a selfmap of  $H_2(S^2)$  and as a selfmap of  $H_2(S^2 \setminus \{0\})$  is given by multiplication by m.

d) Let  $z_i$  be a root of p. Show that the local degree  $deg(p|z_i)$  of p at  $z_i$  is equal to the multiplicity of  $z_i$  as a root of p.