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Solutions to exercise set 4

1 Let X be a space, A ⊂ X be a subspace and j : (X, ∅) ↪→ (X,A) be the inclusion
map. Suppose A is contractible.

a) Show that the natural homomorphism Hn(j) : Hn(X) → Hn(X,A) is an iso-
morphism for all n ≥ 2.
Solution: Let i : A ↪→ X denote the inclusion map. Consider the long exact
sequence of pairs

· · · → Hn(A)
Hn(i)−−−→ Hn(X)

Hn(j)−−−−→ Hn(X,A)
∂−→ Hn−1(A)

Hn−1(i)−−−−−→ Hn−1(X)→ · · ·

Since A is contractible, Hn(A) = Hn−1(A) = 0 for all n ≥ 2. Since the sequence
is exact, this implies that Hn(j) is an isomorphism.

b) Show that Hn(j) is an isomorphism for all n ≥ 1 if A and X are path-connected.
Solution: Since A and X are path-connected, the homomorphism

Z ∼= H0(A)
Hn(i)−−−→ H0(X) ∼= Z

is an isomorphism. This implies that ∂ : H1(X,A) → H0(A) is the zero map.
Thus H1(j) is surjective, since the sequence is exact. Since A is contractible,
H1(A) = 0 is trivial which implies that H1(j) is injective. Hence H1(j) is an
isomorphism.

c) For n ≥ 1, let p ∈ Sn be a point. Show that Sn \ {p} is contractible.
Solution: Stereographic projection from p provides a homeomorphism between
Sn \ {p} and Rn.
We could also argue that Sn is a cell complex with one 0-cell and one n-cell.
Taking p to be the 0-cell, we see that Sn \ {p} is homeomorphic to Dn.

d) For two distinct points p1, p2 ∈ Sn, is Sn \ {p1, p2} contractible?
Solution: We just learned that Sn\{p1} is homeomorphic to Dn. That implies
that Sn \ {p1, p2} is homeomorphic to Dn \ {0} and hence not contractible.
We could also just refer to the lemma of Lecture 8 where we calculated the
corresponding homology.

2 Let f : Sn → Sn be a continuous map. If f is not surjective, then deg(f) = 0.

Solution: If f is not surjective, then we can find a point x ∈ Sn which is not in the
image of f . Then f factors as

f : Sn → Sn \ {x} ↪→ Sn.
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Hence applying the homology functor Hn yields a commutative diagram

Hn(S
n)

''

Hn(f)
// Hn(S

n)

Hn(S
n \ {x}).

77

But Sn \{x} is homeomorphic to Rn via the stereographic projection (from the point
x). In particular, Sn \ {x} is contractible and Hn(S

n \ {x}) = 0 for n ≥ 1. Hence
Hn(f) must be the zero map and deg(f) = 0.

3 Our goal in this exercise is to construct a surjective map f : S1 → S1 with deg(f) = 0.

a) Start with a map

g : S1 → S1, eis 7→

{
e−is if s ∈ [0, π)

eis if s ∈ [π, 2π).

Show that g has degree 0.
Solution: It suffices to find a homotopy between g and a constant map. For
example, the map

h : S1 × [0, 1]→ S1, (s, t) 7→ g((1− t)s)

is a homotopy between g and the constant map at g(0) = 1. By homotopy
invariance of the degree, this implies deg(g) = 0, since any constant map is of
degree 0.

b) Compose g with a another map such that the composition becomes a surjective
map f : S1 → S1 of degree 0.
Solution: It suffices to compose g with the map d : S1 → S1 that doubles the
speed, i.e., d(eis) = ei2s. For, the image of

[π, 2π)→ S1, s 7→ ei2s

is all of S1. Hence we define f : S1 → S1 to be the map d ◦ g.
It remains to check deg(f) = 0. This follows from the fact that the degree is
multiplicative, i.e., deg(d ◦ g) = deg(d) deg(g). So whatever the degree of d is
(it is 2 by the way as d is z 7→ z2), deg(g) = 0 forces deg(f) = 0.

4 Let f : Sn → Sn be a continuous map with deg(f) = 0. Show that there must exist
points x, y ∈ Sn with f(x) = x and f(y) = −y.
Solution: We learned in a previous exercise that if f has no fixed point, then f
is homotopic to the antipodal map. But that would imply deg(f) = (−1)n+1 6= 0.
And we also learned that if there was no point y with f(y) = −y, then f would
be homotopic to the identity. That would imply deg(f) = 1 6= 0. Hence both
assumptions lead to a contradiction to deg(f) = 0. This shows there must be points
x and y on Sn with f(x) = x and f(y) = −y.

Page 2 of 7



Solutions to exercise set 4

5 With this exercise we would like to refresh our memory on real projective spaces and
connect it to questions on the existence of fixed points.

Recall from Lecture 2 that the real projective space RPk is defined to be the quotient
of Rk+1 \ {0} under the equivalence relation x ∼ λx for λ ∈ R \ {0}. The topology
on RPk is the quotient topology.

a) Show that any invertible R-linear map F : Rk+1 → Rk+1 induces a continuous
map f : RPk → RPk.
Solution: Since F is linear, it satisfies F (λx) = λF (x). Hence x ∼ y implies
F (x) ∼ F (y). This allows us to define f by [x] 7→ [F (x)] where [x] denote the
equivalence class of x.
To show thatf is continuous, let π : Rk+1 \ {0} → RPk be the quotient map
π(x) = [x]. Let V ⊂ RPk be an open subset. By definition of the quotient
topolgy, this means that there is an open subset U ⊂ Rk+1 \ {0} such that
π−1(V ) = U . Since F is linear, it is continuous. Hence F−1(U) is open in
Rk+1 \ {0}. Since the diagram

Rk+1 \ {0}

π
��

F // Rk+1 \ {0}

π
��

RPk
f

// RPk

commutes, we have π−1(f−1(V )) = F−1(π−1(V )) = F−1(U). By definition of
the quotient topology, this shows f−1(V ) is open and f is continuous.

b) Show that for any invertible R-linear map F : Rk+1 → Rk+1 with an eigenvector,
the induced map f : RPk → RPk has a fixed point.
Solution: Let x ∈ Rk+1 be an eigenvector of F . That means x 6= 0 and
F (x) = λx. Since F is invertible, we must have λ 6= 0. Hence [x] is a fixed
point of f .

c) Show that any continuous map f : RP2n → RP2n that is induced by an invertible
R-linear map F : R2n+1 → R2n+1 has a fixed point.
Solution: The characteristic polynomial det(F − λId) has degree 2n + 1. In
particular, it is a polynomial of odd degree. The Intermediate Value Theorem
in Calculus tells us that this polynomial must have a zero. In other words, F
must have an eigenvalue. Since F is invertible, this eigenvalue must be 6= 0. By
the previous point, this implies that f has a fixed point.

d) Show that there are continuous maps f : RP2n−1 → RP2n−1 without fixed
points.
Solution: From what we just learned we know that we need to find an invertible
linear map F : R2n → R2n without eigenvectors. The induced map f will then
not have a fixed point. For example, we could choose

F : R2n → R2n, (x1, x2, . . . , x2n) 7→ (−x2, x1,−x4, x3, . . . ,−x2n, x2n−1).

6 Let p(z) = zn + an−1z
n−1 + · · · + a1z + a0 be a polynomial of degree n ≥ 1 with

coefficients in C. The goal of this exercise is to prove the Fundamental Theorem
Algebra, i.e., we would like to show that there is a z ∈ C with p(z) = 0.
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We are going to show this as wollows:

Consider p as a map C→ C. Assume that p had no root. Then we can define a
new map

p̂ : S1 → S1, z 7→ p(z)

|p(z)|
.

We are going to show that this assumption leads to a contradiction.

a) Show that p̂ is homotopic to a constant map. What is the degree of p̂?
Solution: It is actually quite easy to get such a homotopy. We define a map

h : S1 × [0, 1]→ S1, (z, t) 7→ p(tz)

|p(tz)|
= p̂(tz).

Since we assumed p had no root, h is defined and continuous for all t. Hence
it defines a homotopy between the constant map z 7→ h(z, 0) = a0/|a0| and
z 7→ h(z, 1) = p̂. Since the degree of a constant map is 0 and the degree is
invariant under homotopy, this shows deg(p̂) = 0.

b) Show that the map

H : S1 × (0, 1]→ S1, (z, t) 7→
tnp( zt )

|tnp( zt )|

can be continuously extended to a map S1×[0, 1], i.e., analyze H(z, t) for t→ 0.
What is the degree of p̂?
Solution: The mapH is defined and continuous for (z, t) with t > 0. It remains
to check what happens when t→ 0. Therefor we observe

tnp(
z

t
) = tn

(z
t

)n
+ tnan−1

(z
t

)n−1
+ · · ·+ tna1

z

t
+ tna0

= zn + t(tn−2an−1z
n−1 + · · ·+ tn−2a1z + tn−1a0).

This shows

lim
t→0

tnp(
z

t
) = zn, and hence lim

t→0
H(z, t) =

zn

|zn|
for all z.

Hence we can extend H continuously by defining H(z, 0) := zn for all z ∈ S1

(which satisfy |z| = 1).
With this definition at hand, the map H defines a homotopy between the maps

z 7→ H(z, 0) = zn = fn(z) and z 7→ H(z, 1) = p̂.

Since the degree is homotopy invariant and deg(fn) = n, thos shows deg(p̂) = n.

c) Deduce that p must have a root.
Solution: Since n > 0, deg(p̂) cannot be equal to 0 and equal to n. Hence the
assumption that such a map p̂ exists leads to a contradiction. Therefore, our
assumption that p had no root must be false.
Since we started with an arbitrary non-constant polynomial, this proves the
Fundamental Theorem of Algebra.
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7 In this exercise we continue our study of the Fundamental Theorem Algebra. Our
goal is to connect the degree and the multiplicity of a root of a polynomial.

a) Let f : S1 → S1 be a continuous map. Show that if f can be extended to a map
on D2, i.e., if there is a continuous map F : D2 → S1 such that F|S1 = f , then
deg(f) = 0.
Solution: If such an F exists, then we f factors as the composition

f = F ◦ i : S1 i
↪→ D2 F−→ S1

where i denotes the inclusion. By applying the homology functor H1, we get
H1(f) factors as

H1(f) = H1(F ) ◦H1(i) : H1(S
1)

H1(i)−−−→ H1(D
2)

H1(F )−−−−→ H1(S
1).

Since H1(D
2) = 0, this shows that H1(f) must be the zero map. Thus deg(f) =

0.

Now let p(z) = zn+ an−1z
n−1 + · · ·+ a1z+ a0 be a polynomial of degree n ≥ 1 with

coefficients in C.

b) Assume that p has no root z with |z| ≤ 1. Then we can define the map

p̂ : S1 → S1, z 7→ p(z)

|p(z)|
.

Show that the degree of p̂ is 0.
Solution: Since p has no root in D2 ⊂ C, we can extend the map p̂ to a
continuous map on D2 → S1

P̂ : D2 → S1, z 7→ p(z)

|p(z)|
.

which agrees with p̂ on S1. By the previous point, this implies deg(p̂) = 0.

c) Assume that p has exactly one root z0 with |z0| < 1 and no root z with |z| = 1.
Then we can define the map

p̂ : S1 → S1, z 7→ p(z)

|p(z)|
.

Show that the degree of p̂ equals the multiplicity of the root z0, i.e., deg(p̂) = m
wherem ≥ 0 is the unique number such that p(z) = (z−z0)mq(z) with q(z0) 6= 0.
Solution: We can again define the map

h : S1 × [0, 1]→ S1, (z, t) 7→ (z − z0)mq(tz + (1− t)z0)
|(z − z0)mq(tz + (1− t)z0)|

.

Then h is a homotopy between h(z, 1) = p̂ and

h(z, 0) =
(z − z0)mq(z0)
|(z − z0)mq(z0))|

=
(z − z0)m

|(z − z0)m|
· q(z0)
|q(z0)|

.

Note that q(z0)
|q(z0)| is a well defined number, since q(z0) 6= 0. Note that multiplying

by a constant number does not change the degree.
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Let fm,z0 denote the map

fm,z0 : S
1 → S1, z 7→ (z − z0)m

|(z − z0)m|
.

By homotopy invariance of degrees, we then have

deg(p̂) = deg(fm,z0).

Now it suffices to observe that the map

hz0 : S
1 × [0, 1]→ S1, (z, t) 7→ (z − tz0)m

|(z − tz0)m|

is well-defined, since |z0| < 1, and hence defines a homotopy between hz0(z, 1) =
fm,z0 and hz0(z, 0) =

zm

|zm| . Thus deg(fm,z0) = m.

Finally, we switch perspectives a bit. We know that the polynomial p satisfies
lim|z→∞| |p(z)| =∞. Hence we can extend the map p : C→ C to a map p : S2 → S2

where we think of S2 as the one-point-compactification of C ∼= R2. We are going to
use the following fact: Let fm : S2 → S2, z 7→ zm. The effect of H2(fm) as a selfmap
of H2(S

2) and as a selfmap of H2(S
2, S2 \ {0}) is given by multiplication by m.

d) Let zi be a root of p. Show that the local degree deg(p|zi) of p at zi is equal to
the multiplicity of zi as a root of p.
Solution: We choose a small open subset Ui around zi in S2 which is homeo-
morphic to an open disk such that Ui does not contain any other roots of p. Then
we can choose an open subset V around 0 in S2 such that p(Ui \{zi}) ⊂ V \{0}.
The local degree of p at zi is by definition the integer which describes the effect
of the homomorphism

Z ∼= H2(Ui, Ui \ {zi})
H2(p|Ui

)
−−−−−→ H2(V, V \ {0}) ∼= Z.

We can write p(z) as p(z) = (z − z0)mq(z) with q(z) 6= 0 for all z. We define a
map

j : Ui × [0, 1]→ V, (z, t) 7→ (z − z0)mq(tz + (1− t)z0).

Note that, since zi is the only root of p in Ui, we know j(z, t) 6= 0 for all t and
z ∈ Ui \ {zi}. Thus

j(Ui \ {zi} × [0, 1]) ⊂ V \ {0}.

Hence j defines a relative homotopy between

j(z, 0) = (z − z0)mq(z0) and j(z, 1) = (z − z0)mq(z) = p(z)

as maps of pairs (Ui, Ui \ {zi})→ (V, V \ {0}).
Since multiplication with a constant gives homotopic maps and since homology
is invariant under homotopy, this shows that

H2(p|Ui
) = H2(j−, 1)) = H2(j(−, 0)) : H2(Ui, Ui \ {zi})→ H2(V, V \ {0}).
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Finally, the commutative diagram

(Ui, Ui \ {zi})

��

j(−,0)
// (V, V \ {0})

��

(S2, S2 \ {0})
fm
// (S2, S2 \ {0})

where the vertical maps are inclusions of pairs induces a commutative diagram

H2(Ui, Ui \ {zi})
∼=
��

H2(j(−,0))
// H2(V, V \ {0})

∼=
��

H2(S
2, S2 \ {0})

H2(fm)
// H2(S

2, S2 \ {0}).

Since H2(fm) is given by multiplication by m, this shows

deg(p|zi) = deg(j(−, 0) = deg(fm) = m.
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