
Norwegian University of Science
and Technology
Department of Mathematical
Sciences

MA3403 Algebraic
Topology
Fall 2018

Solutions to exercise set 8

1 Show that the two different cell structures on Sn we discussed in the lecture lead to
cellular chain complexes which have the same homology groups.

Solution: (a) The first cell structure of Sn consisted of only one 0-cell and one
n-cell. Hence the cellular chain complex looks like

0→ Z→ 0→ . . .→ Z→ 0

with the left-hand copy of Z in dimension n and the other one in dimension 0. This
gives us Hi(S

n) = Z for i = 0, n and Hi(S
n) = 0 for all other i. Note that for n = 1,

this complex is

0→ Z d=0−−→ Z→ 0

where we know d = 0, since H0(S
n) = Z as a path-connected space. This implies

H1(S
1) = Z as well.

(b) The second cell structure of Sn consisted of exactly two i-cells for i = 0, . . . , n.
Hence the cellular chain complex looks like

Z⊕ Z dn−→ Z⊕ Z dn−1−−−→ . . .
d2−→ Z⊕ Z d1−→ Z⊕ Z→ 0

where the nontrivial terms start in dimension n and end in dimension 0.

We learned in the lecture that, in order to determine the differential dk, we need to
understand the effect of the induced diagonal map

Sk−1
α1
t Sk−1

α2

fk //

g
''

Xk−1 = Sk−1

��

pinch equator
// Sk−1/Sk−2

Sk−1
β1
∨ Sk−1

β2
.

But both summands Sk−1 are attached to Xk−1 = Sk−1 via the identity map. Hence
the map g is the disjoint union of two homeomorphisms of k − 1-spheres. Thus the
degree of Sk−1

αi → Sk−1
βj

is equal to 1 for each pair (i, j).

Thus the differential dk is given by

Z⊕ Z→ Z⊕ Z, (1, 0) 7→ (1, 1) and (0, 1) 7→ (1, 1)

Thus both the kernel and the image of dk are isomorphic to Z. That means that
the homology of the second cellular chain complex yields again Hn(S

n) = Z and
H0(S

n) = Z, whereas for i 6= 0, n the kernels and images cancel out and hence
Hi(S

n) = 0.
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2 Show the statement of the lecture that the isomorphism between the homology of the
cellular chain complex is functorial in the following sense: Let f : X → Y be a cellu-
lar (or filtration-preserving) map between cell complexes, i.e., f(Xn) ⊆ Yn for all n.
Show that f induces a homomorphism of cellular chain complexes C∗(f) : C∗(X)→
C∗(Y ) which fits into a commutative diagram

H∗(C∗(X))

∼=
��

H∗(C∗(f))
// H∗(C∗(X))

∼=
��

H∗(X)
H∗(f)

// H∗(Y ).

Solution: Since f is cellular, it induces a map of pairs (Xn, Xn−1)→ (Yn, Yn−1) for
each n and hence a map of relative homology groups

Cn(X) = Hn(Xn, Xn−1)
Hn(f)−−−−→ Hn(Yn, Yn−1) = Cn(Y ).

This yields the induced map C∗(f).

This map is a chain homomorphism, since we have a commutative diagram

Hn(Xn, Xn−1)
∂Xn //

Hn(f|Xn )

��

Hn−1(Xn−1)
jXn−1

//

Hn(f|Xn−1
)

��

Hn−1(Xn−1, Xn−2)

Hn(f|Xn−1
)

��

Hn(Yn, Yn−1)
∂Yn // Hn−1(Yn−1)

jYn−1
// Hn−1(Yn−1, Yn−2).

To check the compatibility with the isomorphism to the singular homologies of X and
Y , we recall the construction of this isomorphism. Since f preserves the filtration by
skeleta, we get the commutative diagram

Hn(C∗(X))

∼=
��

Hn(C∗(f))
// Hn(C∗(X))

∼=
��

Hn(Xn)/Im (∂Xn )

∼=
��

Hn(f|Xn )
// Hn(Yn)/Im (∂Yn )

∼=
��

Hn(Xn+1)

∼=
��

Hn(f|Xn+1
)

// Hn(Yn+1)

∼=
��

Hn(X)
Hn(f)

// Hn(Y ).

3 Let X be a cell complex and A a subcomplex. Show that the quotient X/A inherits
a cell structure such that the quotient map q : X → X/A is cellular.

Solution: The cells of the quotients are the cells of X which lie in the complement
X − A plus one new 0-cell which is the image of A→ X/A. Note that, since A is a
subcomplex, the cells of X are either in A or in X − A. If fα : Sn−1

α → Xn−1 is an
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attaching map of an n- cell in X − A, then the attaching map of the corresponding
n-cell in X/A is the composite

Sn−1
α

fα−→ Xn−1 → Xn−1/An−1

where we use that the (n− 1)-skeleton An−1 of A is a subspace of Xn−1, since A is
a subcomplex.

The quotient satisfies q(Xn) ⊂ Xn/An = (X/A)n. Hence it is cellular.

4 Consider S1 with its standard cell structure, i.e. one 0-cell e0 and one 1-cell e1. Let
X be a cell complex obtained from S1 by attaching two 2-cells e21 and e22 to S1 by
maps f2 and f3 of degree 2 and 3, respectively. We may express this construction as

X = S1 ∪f2 e21 ∪f3 e22.

a) Determine all the subcomplexes of X.
Solution: We have a trivial subcomplex ∗ consisting just of the 0-cell. By
construction of X, S1 is also a subcomplex. Then we have two subcomplexes
with just one 2-cell attached to S1. A complex A = S1∪f2 e21 with attaching map
f2 and a complex B = S1 ∪f3 e22 one with attaching map f3. Their skeleta are
∗ = Sk0A ⊂ S1 = Sk1A ⊂ Sk2A = A and ∗ = Sk0B ⊂ S1 = Sk1B ⊂ Sk2B = B.
(There is no other subcomplex, since there are no other attaching maps in X.)

b) Determine the cellular chain complex of X and compute the homology of X.
Solution: The cellular chain complex is

Z[e21]⊕ Z[e22]
d2=(2,3)−−−−−→ Z[e1] d1=0−−−→ Z[e0]→ 0,

where d2 is the map (a, b) 7→ 2a+ 3b.
Since 2 and 3 are relatively prime, we know

2a+ 3b = 0 ⇐⇒ (a, b) = m(3,−2) for some m ∈ Z.

Hence the kernel of d2 is

Ker (d2) = {(3m,−2m) ∈ Z⊕ Z : m ∈ Z}.

On the other hand, 2 and 3 being relatively prime also implies that there are a
and b in Z such that 2a + 3b = 1. Thus d2 is surjective. This shows that the
homology of X is given by

Hn(X) ∼=


Z n = 2

0 n = 1

Z n = 0.

c) For each subcomplex Y of X, compute the homology of Y and of the quotient
space X/Y .
Solution: First of all, we observe that the homology groups of all these spaces
and quotients vanish in dimensions ≥ 3, since the complexes are at most two-
dimensional.
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We know the homologies of the subcomplexes ∗ and S1. The cellular chain
complex of A is

Z[e21]
dA2 =2
−−−→ Z[e1] d1=0−−−→ Z[e0]→ 0.

Hence

Hn(A) ∼=


0 n = 2

Z/2 n = 1

Z n = 0.

Similarly, the cellular chain complex of B is

Z[e22]
dB2 =3
−−−→ Z[e1] d1=0−−−→ Z[e0]→ 0.

Hn(B) ∼=


0 n = 2

Z/3 n = 1

Z n = 0.

Now we look at the quotients. Since all spaces are path-connected, we know
H0 is always isomorphic to Z. For the subcomplex ∗, we have X/∗ = X. Since
we consider subcomplexes, we just learned that the corresponding quotients are
again cell complexes. Hence we can use their celllar chain complexes.
For X/S1, we get

0→ Z[e21]⊕ Z[e22]→ 0→ Z[e0]→ 0.

Hence

Hn(X/S
1) ∼=


Z⊕ Z n = 2

0 n = 1

Z n = 0.

For X/A, we get

0→ Z[e22]→ 0→ Z[e0]→ 0.

Hence

Hn(X/A) ∼=


Z n = 2

0 n = 1

Z n = 0.

And similarly for X/B:

0→ Z[e21]→ 0→ Z→ 0.

Hence

Hn(X/B) ∼=


Z n = 2

0 n = 1

Z n = 0.

Actually, these computations could also have been deduced by the observation
that there are homeomorphisms

X/S1 ≈ S2 ∨ S2, X/A ≈ e0 ∪ e22 = S2, and X/B ≈ e0 ∪ e12 = S2.

Page 4 of 6



Solutions to exercise set 8

d) As a more challenging task show that the only subcomplex Y of X for which
X

q−→ X/Y is a homotopy equivalence is the trivial subcomplex consisting only
of the 0-cell.
(Hint: Study the effect of H2(q).)
Note that one can nevertheless show that X is homotopy equivalent to S2. But
we are lacking some results in homotopy theory to prove this.
Solution: The map X → X/∗ = X is obviously a homotopy equivalence.
Since H2(X/S

1) ∼= Z ⊕ Z but H2(X) ∼= Z, X → X/S1 cannot be a homotopy
equivalence.
For X/B we cannot use a similar argument, since both X and X/B have the
same homology. However, the quotient map q : X → X/B is not a homotopy
equivalence. To show this, we compare the two cellular chain complexes. The
map q induces a commutative diagram

Z[e21, e22]
d2=(2,3)

//

C2(q)
��

Z[e1] //

��

Z[e0]

��

// 0

Z[e21] // 0 // Z[e0] // 0.

The left-hand vertical map C2(q) sends the generator corresponding to e21 to e21
and e22 to 0. But the elements in the kernel of d2 = (2, 3) are elements of the
form m(3e21,−2e22) for m ∈ Z. Hence an element m(3e21,−2e22) in the kernel of
d2 is sent to 3me21 by C2(q). That implies that the image of

H2(q) : H2(X)→ H2(X/B)

is isomorphic to 3Z in Z. Hence H2(q) is not surjective, and therefore q is not
a homotopy equivalence.
A similar argument with the roles of e21 and e22 reversed yields the result for
X → X/A.

For the next exercise, note that if X and Y are cell complexes, then X×Y is a cell complex
with cells the products enα,X × emβ,Y where enα,X ranges over the cells of X and emβ,Y ranges
over the cells of Y .

5 Show that the Euler characteristic has the following properties:

a) If X and Y are finite cell complexes, then

χ(X × Y ) = χ(X)χ(Y ).

Solution: Let bn be the number of n-cells in X and cm be the number ofm-cells
in Y . Then X × Y has bncm many n+m-cells. Thus its Euler characteristic is

χ(X × Y ) =
∑
n,m

(−1)n+mbncm = (
∑
n

(−1)nbn)(
∑
n

(−1)mcm) = χ(X)χ(Y ).
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b) Assume the finite cell complex X is the union of the two union of two subcom-
plexes A and B. Then

χ(X) = χ(A) + χ(B)− χ(A ∩B).

Solution: Since X is a finite cell complex, so are A, B and A ∩ B, since they
are subcomplexes of X. Hence their Euler characteristics are defined.
We could prove the statement by merely counting the numbers of cells in each
complex. But here we present the argument that works for the Euler character-
istic in general.
So we apply the Mayer-Vietoris sequence and the rank formula of the lecture.
Since the terms Hn(X) and Hn(A∩B) are always to steps away from each other
in the MVS, there ranks have the same sign, whereas the rank ofHn(A)⊕Hn(B)
has the opposite sign. Hence we get

0 =
∑
n

(−1)n (rank(Hn(X)) + rank(Hn(A ∩B))− rank(Hn(A)⊕Hn(B)))

=
∑
n

(−1)n (rank(Hn(X)) + rank(Hn(A ∩B))− rank(Hn(A)) + rank(Hn(B)))

= χ(X) + χ(A ∩B)− χ(A)− χ(B).
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