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Lecturer: Gereon Quick

Lecture 02

2. Cell complexes and homotopy

Our main goal today is to introduce cell complexes as an important type of
topological spaces and the conecpt of homotopy which is a fundamental idea to
simplify problems.

But we start with a super brief recollection of some basic notions in topology.

A crash course in topology

Roughly speaking, a topology on a set of points is a way to express that points
are near to each other as a generalization of a space with a metric, i.e., a concrete
distance function.

You know the fundamental example of a metric space. For, recall from Calculus
2 that the norm of a vector x = (x1, . . . ,xn) ∈ Rn is defined by

|x| =
√
x2

1 + x2
2 + · · ·+ x2

n ∈ R.

For any n, the space Rn with this norm is called n-dimensional Euclidean
space. The norm induces a maetric, i.e., a distance function by

d(x,y) := |x− y| for x,y ∈ Rn.

This turns Rn into a metric space and therefore an example of a topological
space in the following way:

Open sets in Rn

• Let x be a point in Rn and r > 0 a real number. The ball

Br(x) = {y ∈ Rn : |x− y| < r}
with radius ε around x is an open set in Rn.
• The open balls Br(x) are the prototypes of open sets in Rn.
• A subset U ⊆ Rn is called open if for every point x ∈ U there exists

a real number ε > 0 such that Bε(x) is contained in U .
• A subset Z ⊆ Rn is called closed if its complement Rn \ Z is open

in Rn.
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• Familiar examples of open sets in R are open intervals, e.g. (0,1) etc.
• The cartesian product of n open intervals (an open rectangle) is open in
Rn.
• Similarly, closed intervals are examples of closed sets in R.
• The cartesian product of n closed intervals (a closed rectangle) is closed

in Rn.
• The empty set ∅ and Rn itself are by both open and closed sets.
• Not every subset of Rn is open or closed. There are a lot of subsets which

are neither open nor closed. For example, the interval (0,1] in R; the
product of an open and a closed interval in R2.

The set of open sets in Rn

TRn = {U ⊆ Rn open}

is a subset of all subsets of Rn and has the following properties:

• ∅,Rn ∈ TRn

• Uj ∈ TRn for all j ∈ J ⇒ ∪j∈JUj ∈ TRn

• U1, U2 ∈ TRn ⇒ U1 ∩ U2 ∈ TRn .

We take these three properties as the model for a topology:
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Definition: Topological spaces

Let X be a set together with a collection TX of subsets which satisfy
(i) ∅, X ∈ TX
(ii) Uj ∈ TX for all j ∈ J ⇒ ∪j∈JUj ∈ TX

(iii) U1, U2 ∈ TX ⇒ U1 ∩ U2 ∈ TX .
(Note that in (ii), J can be an arbitrary indexing set.)
Then we say that the pair (X,TX) is a topological space and the sets in
TX are called open. We also say that TX defines a topology on X. We
often drop mentioning TX and just say X is a topological space (when the
topology TX is given otherwise). The complement of an open set is called a
closed set.

Here are some examples of topological spaces which also demonstrate that some
topologies are more interesting than others:

• Rn with TRn as described above.
• An arbitrary set X with the discrete topology TX = P(X), where
Ph(X) is the power set of X, i.e., the set of all subsets of X. In the discrete
topology, all subsets are open and hence all subsets are also closed.
• On an arbitrary set X, there is always the coarse topology TX = {∅, X}.
• Let (X,d) be a metric space. Then we can imitate the construction of

the standard topology on Rn and define the induced topology as the
set of all U ⊆ X such that for each x ∈ U there exists an r > 0 so that
B(x,r) ⊆ U . Here B(x,r) = {y ∈ X : d(x,y) < r} is the metric ball of
radius r centered at x.
• Let (X,TX) be a topological space, let Y ⊂ X be an arbitrary subset. The

induced topology or subspace topology of Y is defined by

TY := {V ⊂ Y : there is a U ∈ TX such that V = U ∩X}.
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Warning

It is important to note that that the property of being an open subset
really depends on the bigger space we are looking at. Hence open always
refers to being open in some given space.
For example, a set can be open in a space X ⊂ R2, but not be open in R2,
see the picture.

Open sets are nice for a lot of reasons. First of all, they provide us with a way
to talk about things that happen close to a point.

Definition: Open neighborhoods

We say that a subset V ⊆ X containing a point x ∈ X is a neighborhood
of x if there is an open subset U ⊆ V with x ∈ U . If V itself is open, we
call V an open neighborhood.

The type of maps that preserve open sets are the continuous maps:

Definition: Continuous maps

Let (X,TX) and (Y,TY ) be topological spaces. A map f : X → Y is contin-
uous if and only if, for every V ∈ TY , f−1(V ) ∈ TX , i.e., the preimages
of open sets are open.
We denote the set of continuous maps X → Y by C(X,Y ).
Topological spaces form a category with morphisms given by continuous
maps.

Examples of continuous maps include:

• Continuous maps Rn → Rm that you are familiar with from Calculus 2.
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• If X carries the discrete topology then every map f : X → Y is con-
tinuous.
• If Y carries the coarse topology then every map f : X → Y is contin-

uous.

Definition: Homeomorphisms

A continuous map f : X → Y is a homeomorphism if it is one-to-one and
onto, and its inverse f−1 is continuous as well. Homeomorphisms preserve
the topology in the sense that U ⊂ X is open in X if and only if f(U) ⊂ Y
is open in Y .
Homeomorphisms are the isomorphisms in the category of topological
spaces.

Some examples are:

• tan: (−π/2,π/2)→ R is a homeomorphism.
• f : R→ R, x 7→ x3 is a homeomorphism.

But not every continuous bijective map is a homeomorphism. Here is an ex-
ample:

Example: A bijection which is not a homeomorphism

Let
S1 = {(x,y) ∈ R2 : x2 + y2 = 1} ⊂ R2

be the unit circle considered as a subspace of R2. Define a map

f : [0,1)→ S1, t 7→ (cos(2πt), sin(2πt)).

We know that f is bijective and continuous from Calculs and Trigonometry
class. But the function f−1 is not continuous. For example, the image
under f of the open subset U = [0,1

4
) (open in [0,1)!) is not open in S1.

For the point y = f(0) does not lie in any open subset V of R2 such that

V ∩ S1 = f(U).
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Here is an extremely important property a subset in a topological space can
have. We are going to use it quite often.

Definition: Compactness

Let X be a topological space. A subset Z ⊂ X is called compact if for
any collection {Ui}i∈I , Ui ⊂ X open, with Z ⊂

⋃
i∈I Ui there exist finitely

many i1, . . . ,in ∈ I such that Z ⊂ Ui1 ∪ · · · ∪ Uin .
In other words, a subset Z in a topological space is compact iff every open
cover {Ui}i of Z has a finite subcover.

• By the Theorem of Heine-Borel, a subset Z ⊂ Rn is compact if and only
if it is closed and bounded. Being bounded means, that there is some
(possibly huge) r >> 0 such that Z ⊂ Br(0).
• In patricular, neither R nor any Rn is compact.
• The n-dimensional disk Dn = {x ∈ Rn : |x| ≤ 1} and the n-sphere
Sn = {x ∈ Rn+1 : |x| = 1} are compact.
• Finite sets, i.e., a subset which contains only finitely many elements, are

always compact.
• If X carries the discrete topology, then a subset Z ⊂ X is compact if and

only if it is finite.
• If X carries the coarse topology, then every Z ⊂ X is compact.

Definition: Connectedness

A topological space X is called connected if it is not possible to split it
into the union of two non-empty, disjoint subsets which are both open and
closed at the same time.
In other words, a space is connected if and only if the empty set and the
whole space are the only subsets which are both open and closed.
Note that the image f(X) of a connected space X under a continuous map
f : X → Y is again connected.
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Simple examples of connected spaces are given by intervals in R.

Definition: Hausdorff spaces

A topological space X is called Hausdorff if, for any two distinct points
x,y ∈ X, there are two disjoint open subsets U,V ⊂ X such that x ∈ U
and y ∈ V .
In other words, in a Hausdorff space we can separate points by open subsets.

Every subspace of RN (with the relative topology) is a Hausdorff space. More-
over, basically all the spaces we look at will be Hausdorff. However, there are
spaces which are not Hausdorff.

For a typical counter-example, consider two copies of the real line Y1 :=
R × {1} and Y2 := R × {2} as subspaces of R2. On Y1 ∪ Y2, we define the
equivalence realtion (x,1) ∼ (x,2) for all x 6= 0.

Let X be the set of equivalence classes. The topology on X is the quotient
topology defined as follows (see also below): a subset W ⊂ X is open in X if and
only if both its preimages in R× {1} and R× {2} are open.

Then X looks like the real line except that the origin is replaced with two
different copies of the origin. Away from the double origin, X looks perfectly
nice and we can separate points by open subsets. But every neighborhood of one
of the origins contains the other. Hence we cannot separate the two origins by
open subsets, and X is not Hausdorff.

Here are some useful facts about compact spaces:
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Lemma: Closed in compact implies compact

1) Let X be a compact topological space. Let Z ⊂ X be a closed subset.
Then Z is compact.
2) Let Y be a Hausdorff space. Then any compact subset of Y is closed.

Let us prove the first assertion. The other one is left as a little exercise.

Proof: Let {Ui}i∈I be an open cover of Z. We set U := X \Z. Then {U,Ui}i∈I
is an open cover of X. Since X is compact, there exist i1, . . . ,in such that X ⊂
U ∪Ui1 ∪ . . .∪Uin and hence, by the definition of U , we have Z ⊂ Ui1 ∪ . . .∪Uin .
QED

Another useful fact:

Lemma: Continuous images of compact sets are com-
pact

Let f : X → Y be continuous. Let K ⊂ X be compact. Then f(K) ⊂ Y is
compact.
But, in general, if Z ⊂ Y is compact, then f−1(Z) ⊂ X does not have to
be compact.

As a consequence we can deduce a useful criterion for when continuous bijec-
tions are homeomorphisms:

Lemma: Continuous bijection from compact to Haus-
dorff is a homeomorphism

Let X be a compact space and Y be Hausdorff. If f : X → Y is a continuous
bijection, then f is a homeomorphism.

Proof: Since f is a bijection, there is a set-theoretic inverse map which we
denote by g := f−1 : Y → X. We need to show that g is continuous. So let
K ⊂ X be a closed subset. We are going to show that g−1(K) = f(K) ⊂ is
closed in X. Since X is compact, K is also compact as a closed subset. Hence
its image f(K) ⊂ Y is compact. Since Y is Hausdorff, this implies that f(K) is
closed in Y . QED
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Compactness, being Hausdorff, and being connected are important examples
of topological properties:

Homeomorphisms preserve topological properties

Slogan: Topology is the study of properties which are preserved under
homeomorphisms. From this point of view, a topological property is by
definition a property that is preserved under homeomorphisms.
Hence, roughly speaking, from the point of view of a topologist, two spaces
which are homeomorphic are basically the same.
For example, if f : X → Y is a homeomorphism, then X is compact if
and only if Y is compact. For, both f and its inverse f−1 are continuous
and surjective maps. Hence if X is compact, so is f(X) = Y ; and if Y is
compact, so is f−1(Y ) = X.

We will remind ourselves of many other important topological properties along
the way.

Constructing new spaces out of old

There are sveral ways to construct topological spaces. Here are two important
constructions that we are going to use:

Definition: Product topology

Let X and Y be two topological spaces. The product topology on X×Y
is the coarsest topology, i.e., the topology with fewest open sets, such that
the projection maps X × Y → X and X × Y → Y are both continuous.
More concretely, a subset W ⊂ X × Y is open in the product topology if
for every point w = (x,y) ∈ W there are open subsets x ∈ U ⊂ X and
y ∈ V ⊂ Y with U × V ⊂ W .

Definition: Disjoint unions or sums of spaces

Let X and Y be two topological spaces. We denote by X t Y the disjoint
union (or sum) of X and Y . Recall that as a set we can define X t Y as

X t Y = X × {0} ∪ Y × {1}.
(In other words, we take one copy of X and one copy of Y and by the
indexing we make sure that we keep them apart.)
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The disjoint union inherits a topology by defining

TXtY = {U t V : U ∈ TX , V ∈ TY }.

Another important construction for producing new topological spaces is to take
quotients.

• Quotient Spaces

Let X be a topological space. Let ∼ be an equivalence relation on X. For
any x ∈ X let [x] be the equivalence class of x. We denote as usually the set of
equivalence classes by

X/ ∼:= {set of equivalence classes under ∼} = {[x] : x ∈ X}.

Let π : X → X/ ∼, x 7→ [x] be the natural projection. The quotient topology
is defined by

U ⊂ X/ ∼ open ⇐⇒ π−1(U) ⊂ X open.

Note that the map π : X → X/ ∼ is continuous by definition.

The quotient topology is the coarsest topology, in the sense that it has fewest
open sets, such that the quotient map π is continuous.

The quotient topology has the following universal property: For any topolog-
ical space Y and for any maps f : X → Y which descends to a map f̄ : X/ ∼→ Y ,
i.e., f is constant on equivalence classes, such that the diagram

X

π
��

f
// Y

X/ ∼
f̄

<<

commutes, the map f is continuous iff f̄ is continuous.

Many important examples of spaces that we will study arise as follows:

• Take a subset X ⊂ Rn and consider it with the induced topology as a
subset.
• Consider an interesting equivalence relation ∼ on X and take the quotient

topological space X/ ∼.

Let us look at some examples of this procedure:
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Torus

We start with the square

S := {(x,y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} ⊂ R2

with the subspace topology induced from the topology of R2. Now we would
like to glue opposite sides to each. This corresponds to taking the quotient

T := S/((x,0) ∼ (x,1) and (0,y) ∼ (1,y)).

Real projective space

Real projective space RPn is the space of lines in Rn+1 through the origin.
As a topological space it can be constructed as follows:
We define the equivalence relation ∼ on the n-sphere Sn by identifying
antipodal points, i.e., x ∼ y ⇐⇒ y = −x. Then we have

RPn = Sn/ ∼
and equip it with the quotient topology. Since Sn is compact and RPn is
the continuous image of Sn (under the quotient map), we see that RPn is
compact.

There is also a complex version:

Complex projective space

Again, complex projective space CPn is the space of one-dimensional C-
vector subspaces in Cn+1. It can be topologized as follows:
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We define the equivalence relation ∼ on the sphere S2n+1 by x ∼ y if and
only if there is a λ ∈ C with |λ| = 1 such that y = λx where we think S2n+1

as the subspace of points x in Cn with |x| = 1. Then we have

CPn = S2n+1/ ∼
and equip it with the quotient topology. Since S2n+1 is compact, CPn is
compact.
Aside: Note that the “topological dimension” of CPn is 2n (we have not
said what that means though). The n rather refers to the dimension as a
complex manifold.

Projective spaces play an important role in geometry and topology. We will
meet them quite frequently during this course (and future courses).

It happens also that it might be necessary to present a well-known space in a
different form. For example, we can write spheres as quotients. We will see that
this is just one example of a whole class of interesting spaces.

Sphere as a quotient

For every n ≥ 1, there is a homeomorphism

ρ̄ : Dn/∂Dn ≈−→ Sn.

There are in fact many different ways to construct such a homeomorphism.
Let us write down one in concrete terms for the special case n = 2. The
general case follows by throwing in more coordinates.
We define a continuous map ρ : D2 → S2 such that{

ρ(0,0) = (0,0,− 1) and

ρ(x,y) = (0,0,+ 1) for all (x,y) ∈ ∂D2 = S1.

Since ρ will be constant on ∂Dn, it will induce a map ρ̄ on the quotient
D2/∂D2.
We define ρ as a rotation invariant map which sends the inner part of D2 of
points with radius less than 1/2 mapping onto the lower hemisphere of S2

and the outer part of D2 of points with radius greater than 1/2 mapping
onto the upper hemisphere ρ : D2 → S2 by

ρ(x,y) =


(

2x,2y,−
√

1− 4(x2 + y2)
)

if x2 + y2 ≤ 1/4(
f(x,y)x,f(x,y)y,

√
1− f(x,y)2(x2 + y2)

)
if x2 + y2 ≥ 1/4
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where we denote f(x,y) = 4 − 4
√
x2 + y2 (to make the formula fit in a

frame). This map is well-defined also for points with x2 + y2 = 1/4. More-
over, ρ is contiunuous, as a composite of continuous functions, and constant
on ∂D2.
An inverse map can be defined by

S2 → D2/∂D2, (x,y,z) 7→


(1

2
x,1

2
y) if − 1 ≤ z ≤ 0

(g(x,y)x,g(x,y)y) if 0 ≤ z < 1

class of ∂D2 for (0,0,1)

where we denote g(x,y) =
1−

√
1−
√
x2+y2

2
√
x2+y2

. Note that this map is well-defined

also for z = 0, since then x2 + y2 = 1 and g(x,y) = 1/2.

• Compactifications

The concrete maps we wrote down in the previous example are kind of ugly. But
there is another way to show that there is such a homeomorphism Dn/∂Dn ≈ Sn.

For we can also consider Sn as the one-point compactification of Rn. Let
us first say what that means:

Definition: One-point compactification

1) If Y is a compact Hausdorff space and X ⊂ Y is a proper subspace whose
closure equals Y , then Y is called a compactification of X.
If Y \ X consists of a single point, then Y is called the one-point com-
pactification of X.
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2) Let X be a topological space with topology TX . Let∞ denote an abstract

point which is not in X and let X̂ := X ∪ {∞}. We define a topology TX̂
on X̂ as follows:

• each open set in X is an open set in X̂, i.e., TX ⊂ TX̂ and
• for each compact subset K ⊆ X, define an open subset UK ∈ TX̂ by
UK := (X \K) ∪ {∞}.

Then X̂ is a one-point compactification of X.
To see that X̂ actually is compact, take any open cover of X̂. Then at least
one of the open sets contains ∞. Hence that set covers (X \K) ∪ {∞} for
some compact set K. Since K is compact, finitely many of the remaining
open sets suffice to cover K and therefore all of X̂.

Examples of one-point compactifications are spheres. For Sn is the one-point
compactification of Rn. For n = 1, one can think of S1 as taking the real number
line and connect the two ends at infinity in one point∞ to close the circle. More
generally, one can construct a homeomorphism via stereographic projection.

As an application, we give a new proof Dn/∂Dn ≈ Sn:

Sphere as a quotient revisited

For every n ≥ 1, there is a homeomorphism

ρ̄ : Dn/∂Dn ≈−→ Sn.

Since Sn ≈ Rn ∪ {∞}, it suffices to construct homeomorphism

ρ : Dn ≈−→ Rn ∪ {∞}, x 7→

{
x

1−|x| if |x| < 1

∞ if |x| = 1.

We claim that the map ρ is continuous. To show this, we use the sequential
criterion of continuity. Let (an) be a sequence in Dn with limn→∞ an =
c. If c ∈ Dn \ ∂Dn is an interior point, then ρ(c) ∈ Rn and we know
limn→∞ ρ(an) = ρ(c), since the restriction of ρ to Dn \ ∂Dn is a composite
of continuous maps and the an will all be in Dn \ ∂Dn for n sufficiently
large. If c ∈ ∂Dn is a boundary point, then ρ(c) = ∞. Since an → c, the
sequence (ρ(an)) is unbounded, since the denominator of ρ(an) tends to 0
while the norm of the nominator tends to 1.
Hence for any compact subset K in Rn, i.e., for any closed and bounded
K ⊂ Rn, there is a natural number N(K) such that ρ(an) /∈ K for all
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n ≥ N(K). That means that the sequence (ρ(an)) converges in the
topology of Rn ∪ {∞} to ρ(c) =∞. This shows that ρ is continuous.
We also know that ρ̄ is bijective, since the restriction ρ : Dn \ ∂Dn → Rn

is bijective and ρ sends ∂Dn to ∞. Hence ρ̄ is a continuous bijection from
a compact space to a Hausdorff space. As we have seen above, this implies
that ρ̄ is a homeomorphism.

• Cell complexes

Another way to think of the above procedure is the following. The sphere
consists of two parts that we glue together:

• an open n-disk, i.e., the open interior Dn \ ∂Dn,
• and a single point, which corresponds to the class of the boundary ∂Dn;

on S2 we can picture this point as the northpole (the light blue dot in the
above picture).

Topologists think of such building blocks as the cells of a space. However,
not all spaces can be built this way. So let us make precise what is needed:

Definition: Cell complexes

A cell complex or CW -complex is a space X which results from the
following inductive procedure:

(1) Start with a discrete set X0. The points of X0 will be the 0-cells
of X.

(2) If Xn−1 is defined, we construct the n-skeleton Xn by attaching
n-cells enα to Xn−1 via continuous maps ϕα : Sn−1 → Xn−1. This
means that Xn is the quotient space of the disjoint union Xn−1tα
Dn
α of Xn−1 with a collection of n-disks Dn

α under the identifications
x ∼ ϕα(x) for x ∈ ∂Dn

α and ϕα : ∂Dn−1
α = Sn−1

α → Xn−1. Thus, as
a set, Xn consists of Xn−1 together with a union of n-cells enα each
of which is an open n-disk Dn

α \ ∂Dn
α.

(3) If this process stops after finitely many steps, say N , then X =
XN . But it is also allowed to continue with the inductive process
indefinitely. In this case, one defines X =

⋃
nX

n and equips X with
the weak topology, i.e., a set A ⊂ X is open (or closed) if and
only if A ∩Xn is open (or closed) in Xn for each n.

We have already seen some examples of cell complexes:
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• The sphere Sn is a cell complex with just two cells: one 0-cell e0 (that
is a point) and one n-cell en which is attached to e0 via the constant map
Sn−1 → e0. Geometrically, this corresponds to expressing Sn as Dn/∂Dn:
we take the open n-disk en = Dn \ ∂Dn and collapse the boudnary ∂Dn

to a single point which is e0.
• Real projective space RPn is a cell complex with one cell in each

dimension up to n. To show this we proceed inductively. We know that
RP0 consists of a single point, since it is S0 whose two antipodal points are
identified. Now we would like to understand how RPn can be constructed
from RPn−1: We embedd Dn as the upper hemisphere into Sn, i.e., we
consider Dn as {(x0, . . . ,xn) ∈ Sn : x0 ≥ 0}. Then

RPn = Sn/x ∼ −x = Dn/(x ∼ −x for boundary points x ∈ ∂Dn).

But ∂Dn is just Sn−1. Thus the quotient map

Sn−1 → Sn−1/ ∼ = RPn−1

attaches an n-cell en, the open interior of Dn, at RPn−1. Thus we obtain
RPn from RPn−1 by attaching one n-cell via the quotient map Sn−1 →
RPn−1. Summarizing, we have shown that RPn is a cell complex with one
cell in each dimension from 0 to n:

RPn = e0 ∪ e1 ∪ · · · ∪ en.
• We can continue this process and build the infinite projective space
RP∞ :=

⋃
nRPn. It is a cell complex with one cell in each dimension. We

can think of RP∞ as the space of lines in R∞ =
⋃
nRn.

The torus is a cell complex with one 0-cell, two 1-cells and one 2-
cells. This should be apparent from the construction of the torus as a
quotient of a square that we have seen above. Starting with X0 being a
point p, the red dot in the picture above. Then we attach two open 1-cells
e1
a, e

1
b ⊂ D1 via the two constant maps

ϕ1
a, ϕ

1
b : S0 → X0

where we think of e1 = (0,1) ⊂ [0,1] = D1 as the open unit interval. (In
the picture they look like two straight lines, but we should think of the
end points being attached to p.)

Finally, we attach an open 2-cell e2 ⊂ D2 via the attaching map

ϕ2 : S1 → X1, ϕ2(x,y) =


x ∈ e1

a if y > 0

x ∈ e1
b if y < 0

p if y = 0.

Note that this is a well-defined map, since we have identfied the endpoints
in X1 with p and hence (1,0) and (−1,0) are sent to the same point p.
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• Actually, every compact smooth manifold can be turned into a finite
cell complex. This illustrates the vast scope and importance of cell com-
plexes in algebraic topology.

What makes topology unique

Note that the ability to build spaces by gluing together cells (or other
specific spaces) makes life as a topologist particularly comfortable. For
example, we will see that this procedure will often allow us to create spaces
with given algebraic invariant. This flexibility together with the concept of
homotopy, which we will explore next, puts algebraic topologists in a
unique position and led to the solution of a lot of problems, not just
in topology. Geometry, in its various forms, is usually much more rigid
and does not allow us to perform such maneuvers.

Note that there is a direct way to define the Euler characteristic of cell
complexes. We will later see the reason why this is the correct definition using
homology. Right now we can already check at the example of a tetrahedron that
this definition agrees with Euler’s formula we saw in the first lecture.

Definition: Euler characteristic for cell complexes

The Euler number of a cell complex X (with cells in dimension at most n)
is defined to be the integer

χ(X) =
n∑
k=0

(−1)k#{k − dimensional cells that are attached to Xk−1}.
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For example, the Euler characteristic of Sn is

χ(Sn) = 1 + (−1)n =

{
2 n even

0 n odd

For real projective n-space we get

χ(RPn) = 1− 1 + 1− · · ·+ (−1)n =

{
0 n even

1 n odd

For the torus, we get

χ(T ) = 1− 2 + 1 = 0.

To compare this definition with Euler’s formula we used in the first lecture, let
us look at the tetrahedron which is also a cell complex:

• Homotopy

Homotopy is a fundamental notion in topology. Let us start with a definition
and then try to make sense of this.

Definition: Homotopies

Let f0,f1 : X → Y be two continuous maps. Then f0 and f1 are called
homotopic, denoted f0 ' f1, if there is a continuous map h : X×[0,1]→ Y
such that, for all x ∈ X,

h(x,0) = f0(x), and h(x,1) = f1(x).

Homotopy defines an equivalence relation (exercise!) on the set of continu-
ous maps from X to Y . The set of equivalence classes of continuous maps
from X to Y modulo homotopy is denoted by [X,Y ].
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Definition: Homotopy equivalences and contractible
spaces

• A continuous map f : X → Y is called a homotopy equivalence
if there is a continuous map g : Y → X such that g ◦ f ' idX and
f ◦ g ' idY .
• Two spaces X and Y are called homotopy equivalent if there

exists a homotopy equivalence f between X and Y . This is often
denoted by X ' Y .
• A space which is homotopy equivalent to a one-point space is called

contractible.

For example, Rn is contractible, since

h : Rn × [0,1]→ Rn, (t,x) 7→ (1− t)x

defines a homotopy between the identity map on Rn and the constant map Rn →
{0} ⊂ Rn to the one-point space consisting of the origin. For the same reason,
the n-disk Dn is contractible.

However, it is not always obvious which spaces are homotopy equivalent to each
other. So it will be useful to develop some intuition for homotopy equivalences.
There is a particular type that is easier to spot:
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Definition: Deformation retracts

Let X be a topological space and A ⊂ X a subspace.
• Then A is called a retract of X if there is a retraction ρ : X → A,

i.e., there is a continuous map ρ : X → A with ρ|A = idA.
• Note that we can consider ρ also as a map X → X via the inclusion

X
ρ−→ A ⊂ X. If ρ is then in addition homotopic to the identity of

X, then A is called a deformation retract of X. In this case, ρ
is called a deformation retraction. Note that in this case, ρ and
the inclusion A ⊂ X are mutual homotopy inverses.
• If this homotopy between ρ and idX can be chosen such that all

points of A remain fixed, i.e., the homotopy h(t,a) = a for all
a ∈ A and all t ∈ [0,1], then ρ is called a strong deformation
retraction and A is called a strong deformation retract of X.

For a deformation retraction, one can think of the homotopy h as a map which
during the time from 0 to 1 pulls back all the points of X into the subspace A,
and leaves the whole time the points in A fixed. Here are some examples:

• The origin {0} is a strong deformation retract fo Rn and of the n-disk Dn.
• For any topological space Y , the product Y ×{0} is a strong deformation

retract of Y ×Rn and Y ×Dn. For example, the circle S1×{0} is a strong
deformation retract of the solid torus S1 ×D2.
• The n-sphere Sn is a strong deformation retract of the punctured disk
Dn+1 \ {0} and also of Rn+1 \ {0}.
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Why homotopy?

The simplest reason why we consider the homotopy relation is that it
works. It is fine enough such that all the tools that we are going to
define are invariant under homotopy, i.e., they are constant on equivalence
classes. But it is also coarse enough that it identifies enough things such
that many problems become simpler and in fact solvable.
With respect to first point, one can consider the homotopy category
hoTop of spaces, i.e., the category whose objects are topological spaces
and whose sets of morphisms from X to Y are the sets of homotopy classes
of maps [X,Y ], ssatifies a universal property for invariants.
With respect to the second point, we just indicate that life in hoTop is
much easier because there are much fewer morphisms. For example,
there are many and complicated continuous maps S1 → C \ {0}. But there
are very few homotopy classes of such maps, since [S1,C \ {0}] = Z, up to
homotopy a map S1 → C \ {0} is determined by the winding number, i.e.,
the number of times it goes around the origin.
To convince ourselves that homotopy actually works, we remark that homo-
topy is even fine enough to detect diffeomorphism classes between smooth
manifolds and helped for example to classify manifolds up to bordism. But
this is a story we save for a future lecture/class.
If you are still not convinced, then let us remark that to study things up-
to-homotopy is so useful that mathematicians work hard to find analogs
of the homotopy relation and the homotopy category in many different
areas. If you want to learn more about this, have a look at Quillen’s highly
influential book on Homotopical Algebra. You will also see an example
in homological algebra where one talks about homotopies between chain
complexes.
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