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Lecture 04

4. Singular homology, functoriality and H0

Recall that we constructed, for any topological space X, the singular chain
complex of X

· · · ∂−→ Sn(X)
∂n−→ Sn−1(X)

∂n−1−−−→ · · · ∂2−→ S1(X)
∂1−→ S0(X)

∂0−→ 0.

The homomorphisms ∂n satisfy the fundamental rule: ∂ ◦ ∂ = 0.

The following definition of homology groups applies to any chain complex.
However we formulate it only for the singular chain complex:

Definition: Singular homology

The nth singular homology group of X is defined to be the quotient
group of n-cycles modulo n-boundaries:

Hn(X) =
Zn(X)

Bn(X)
=

Ker (∂ : Sn(X)→ Sn−1(X))

Im (∂ : Sn+1(X)→ Sn(X))
.

We are going to say that two cycles whose difference is a boundary are
homologous.

Let us make a first attempt to understand what is going on here:

Singular what?

In algebra, homology is a way to measure the difference between cycles
and boundaries. Singular homology is an application of homology in order
to understand the structure of a space.
Given a space X, the group of n-cycles measures how often we can map
an n-dimensional simplex into X without collapsing it to any of its n − 1-
dimensional faces.
Let σ(∆n) be the image in X of such a cycle. If we can even map an (n+1)-
dimensional simplex σ′(∆n+1) into X whose boudnary is σ(∆n), then we can
continuously collapse all of σ(∆n) to a point. In this case, we would like to
forget about this σ. For, from an n-dimensional point of view, this σ(∆n) is
not interesting. That is what it means geometrically/topologically to take
the quotient by Bn(X).
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But if we cannot find an n + 1-dimensional simplex such that σ(∆n) is
its boundary, then σ(∆n) potentially carries interesting n-dimensional
information about X.
The slogan is: Hn(X) measures n-dimensional wholes in X.

Before we see some examples of homology groups we go back to the idea of
“orientations of simplices” and see why taking the quotient by boundaries is
a good thing. We said that we think of the signs as orientations, but this is not
completely correct. But modulo boundaries we are good:

Orientations revisited

Let X be some space, and suppose we have a one-simplex σ : ∆1 → X.
Define

φ : ∆1 → ∆1, (t,1− t) 7→ (1− t,t).
Precomposing with φ gives another singular simplex σ̄ = σ◦φ which reverses
the orientation of σ. It is not true that σ̄ = −σ in S1(X).
However, we claim that

σ̄ ≡ −σ mod B1(X).

This means that there is a 2-chain in X whose boundary is σ̄+σ. If d0(σ) =
d(σ) such that σ ∈ Z1(X) is a 1-cycle, then σ̄ and σ are homologous and
[σ̄] = [σ] in H1(X).
To prove the claim we need to construct an appropriate 2-chain. Let
π : ∆2 → ∆1 be the affine map determined by sending e0 and e2 to e0
and e1 to e1. For x ∈ X and n ≥ 0, we write κnx : ∆n → X for the constant
map with value x.
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Now we calculate

∂(σ ◦ π) = σ ◦ π ◦ φ2
0 − σ ◦ π ◦ φ2

1 + σ ◦ π ◦ φ2
2 = σ̄ − κ1σ(0) + σ.

Hence up to the term −κ1σ(0) we get what we want. So we would like to elim-

inate this term. To do that we define the constant 2-simplex κ2σ(0) : ∆2 → X

at σ(0). Its boundary is

∂(κ2σ(0)) = κ1σ(0) − κ1σ(0) + κ1σ(0) = κ1σ(0).

Thus

σ̄ + σ = ∂(π ◦ σ + κ2σ(0))

which proves the claim.

Actually, we will have to get back to orientations almost regularly, in par-
ticular when we talk about simplicial complexes, and step by step improve our
understanding and control.

Aside: The sequence of homology groups {Hn(X)}n also forms a graded
abelian group. Note that even though Zn(X) and Bn(X) are free abelian groups
because they are subgroups of the free abelian group Sn(X), the quotient Hn(X)
is not necessarily free. Moreover, while Zn(X) and Bn(X) may be uncount-
ably generated, Hn(X) turns out to be finitely generated for the spaces we are
interested in.

Let us look at two simple examples:

(1) Let X = ∅. Then Sing∗(∅) = ∅ and S∗(∅) = 0 is just the trivial abelian
group by convention. Hence · · · → S2 → S1 → S0 is the zero chain
complex and Z∗(∅) = B∗(∅) = 0. The homology in all dimensions is
therefore 0.

(2) Let X = pt be a one-point space. Then, for each n, there is only one
singular n-simplex, namely the constant map σn : ∆n → pt. In other

words, Sn(X) = Z · σn is generated by a single element. Hence σ
(i)
n =
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σn ◦ φni = σn−1 and

∂σn =
n∑
i=0

(−1)iσ(i)
n =

n∑
i=0

(−1)σn−1 =


0 n odd

σn−1 n even

0 n = 0.

For cycles and boundaries this means

Zn(X) =

{
Z · σn n odd or n = 0

0 n even and n 6= 0,

and

Bn(X) =

{
Z · σn n odd or

0 n even.

For the homology groups we get

Hn(pt) ∼=

{
Z n = 0

0 n 6= 0.

To complete the picture, the singular chain complex looks like

· · · ∂=id−−→ Z ∂=0−−→ Z ∂=id−−→ Z ∂=0−−→ Z→ 0.

• Functoriality

Now that we have defined homology we can ask how it behaves under continu-
ous maps. So let X and Y be topological spaces and f : X → Y be a continuous
map. Since singular simplices are just maps, we can define an induced map

f∗ : Singn(X)→ Singn(Y ), σ 7→ f ◦ σ

just by composition with f .

The same construction yields an induced map on chains:

f∗ = Sn(f) : Sn(X)→ Sn(Y ),
m∑
j=1

ajσj 7→
m∑
j=1

aj(f ◦ σj).

The induced map is compatible with the boundary operator in the following
way:
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Lemma: The singular chain complex is natural

For every n ≥ 0, we have a commutative diagram

Sn(X)

∂X
��

Sn(f)
// Sn(Y )

∂Y
��

Sn−1(X)
Sn−1(f)

// Sn−1(Y ).

Proof: We just calculate and check that both ways have the same outcome
for any singular n-simplex σ on X:

∂Y (Sn(f))(σ) =
n∑
i=0

(−1)i(f ◦ σ) ◦ φni

=
n∑
i=0

(−1)if ◦ (σ ◦ φni )

= Sn−1(f)

(
n∑
i=0

(−1)iσ ◦ φni

)
= Sn−1(f)(∂Xσ).

QED

The lemma has the important consequence that

Sn(f)(Zn(X)) ⊂ Zn(Y ) and Sn(f)(Bn(X)) ⊂ Bn(Y ).

For, if c ∈ Zn(X), then

∂Y (Sn(f)(c)) = Sn−1(f)(∂X(c)) = Sn−1(f)(0) = 0;

and, if c ∈ Bn(X), then there is a b ∈ Bn+1(X) with ∂X(b) = c and

∂Y (Sn+1(f)(b)) = Sn(f)(∂X(b)) = Sn(f)(c),

i.e., there is an element, b′ = Sn+1(f)(b), with ∂Y (b′) = Sn(f)(c).

Proposition: Homology is functorial

Thus we get a well defined induced homomorphism on homology groups

Hn(f) : Hn(X)→ Hn(Y ), [c] 7→ [Sn(f)(c)].

The homomorphisms Sn(f) and Hn(f) have the following properties:
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• Sn(idX) = idSn(X) and Hn(idX) = idHn(X)

• Sn(f ◦ g) = Sn(f) ◦ Sn(g) and Hn(f ◦ g) = Hn(f) ◦Hn(g).

To summarize our observations: Sn(−) and Hn(−) are functors from the
category of topological spaces to the category of abelian groups. For the sequence
of all Sn(−) even more is true: S∗(−) is a functor from the category of topological
spaces to the category of chain complexes of abelian groups (with chain maps as
morphisms).

Invariance

As a consequence, if f : X → Y is a homeomorphism, then Hn(f) is an
isomorphism of abelian groups. In other words, homology groups only
depend on the topology of a space.

In fact, we will soon see that homology is a coarser invariant in the sense that
homotopic maps induce the same map in homology.

• The homology group H0

Let us try to understand the simplest of the homology groups.

Lemma: Augmentation

For any topological space X, there is a homomorphism

ε : H0(X)→ Z
which is nontrivial whenever X 6= ∅.

Proof: If X = ∅, then H∗(∅) = 0 by definition. In this case, we define ε to be
the zero homomorphism.
Now let X 6= ∅. Then there is a unique map X → pt from X to the one-point
space. By functoriality, it induces a homomorphism

ε : H0(X)→ H0(pt) = Z.

QED

Let us try to understand this ε a bit better. The map X → pt induces a
homomorphism of chain complexes S∗(X) → S∗(pt) which sends any 0-simplex
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σ : ∆0 → X to the constant map

κ0 : ∆0 σ−→ X → pt

which is the generator of S0(pt) = Z. Hence we get a map σ 7→ 1 which extends
to a homomorphism ε̃ : S0(X)→ Z by additivity, i.e.

ε̃(
∑
j

ajσj) =
∑
j

aj ∈ Z.

To double check that this map descends to a homomomorphism ε on
H0(X) we need to show that it maps boundaries to 0. (We know this already,
but let us do it anyway.)

So let b be a 0-chain which is the boundary of a 1-chain c, i.e., b = ∂c, and let
c =

∑
j ajγj with finitely many 1-simplices γj : ∆1 → X. Then each γj ◦φ1

0 and

γj ◦ φ1
1 are 0-simplices and are sent to 1 by ε̃. Thus we get

ε(b) = ε(∂c) = ε(
∑
j

aj(γj ◦ φ1
0 − γj ◦ φ1

1)) =
∑
j

aj −
∑
j

aj = 0.

We learn from this discussion that, since a 0-simplex ∆0 → X can be identified
with its image point, ε counts the points on X, with multiplicities. And if
two points can be connected by a 1-simplex, i.e., by a path in X, then they add
up to 0. This leads us to:

Theorem: H0 for path-connected spaces

If X is path-connected and non-empty, then ε is an isomorphism

ε : H0(X)
∼=−→ Z.

Proof: Since X is non-empty, there is a point x ∈ X. The 0-simplex σ = κ0x
with value x is an element in S0(X) which is sent to 1 ∈ Z. Additivity implies that
ε is surjective. To show that ε is also injective, we need to show that the classes
of the 0-simplices given by constant maps at any two points are homologous.

So let y ∈ X be another point. Since X is path-connected, there is a path
ω : [0,1]→ X with ω(0) = x and ω(1) = y. We define a 1-simplex σω by

σω(t0,t1) := ω(1− t0) = ω(t1) for t0 + t1 = 1, 0 ≤ t0,t1 ≤ 1.
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The boundary of σω is

∂(σω) = d0(σω)− d1(σω) = σω(e1)− σω(e0)

= σω(0,1)− σω(1,0)(= ω(0)− ω(1))

= κ0x − κ0y

(where we identify 0-simplices and their image points). Hence the 0-simplices κ0x
and κ0y are homologous. Since 0-simplices generate H0(X) and ε is a homomor-
phism, this implies that ε is injective. QED

Corollary: H0 is generated by path components

If X is a disjoint union X =
⊔
i∈I Xi where each Xi is path-connected and

non-empty, then, for all n ≥ 0,

Hn(X) ∼=
⊕
i∈I

Hn(Xi).

In particular, for n = 0 we get

H0(X) ∼=
⊕
i∈I

Z.

In other words, H0(X) is the free abelian group generated by the set of
path-components of X.

Proof: If σ : ∆n → X is an n-simplex, then its image lies in exactly one
connected component Xi. Otherwise, we could write ∆n as the disjoint union of
two open and closed subsets contradicting the fact that ∆n is connected. Hence
σ factors into ∆n → Xi ↪→ X.
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Since singular n-chains are freely generated by n-simplices, this shows that the
singular chain complex of X splits into a direct sum

S∗(X) =
⊕
i∈I

S∗(Xi).

For the same reason the boundary operators

∂ : Sn(X) ∼=
⊕
i∈I

Sn(Xi)→
⊕
i∈I

Sn−1(Xi) ∼= Sn−1(X)

split into components ∂Xi
: Sn(Xi) → Sn−1(Xi). Hence we get an isono The

statement for n = 0 then follows from the previous result on path-connected
spaces. QED
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