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Lecture 05

5. Relative homology and long exact sequences

If we want to show that singular homology groups are useful, we need to be
able to compute them. For H0 that was not so difficult. But for n ≥ 1, we need
to develop some techniques.

In general, if you would like to compute something for spaces, it is always a
good idea to think about the relation to subspaces. Maybe the information
on smaller subspaces provides insides on the whole space. That is the idea we
are going to exploit now for homology groups.

Let X be a topological space and let A ⊂ X be a subset. We can consider
(X,A) as a pair of spaces. If (Y,B) is another such pair, then we denote by

C((X,A),(Y,B)) := {f ∈ C(X,Y ) : f(A) ⊂ B}

the set of continuous maps which respect the subspaces. In fact, we get a category
Top2 of pairs of topological spaces.

Given a pair of spaces A ⊂ X, any n-simplex of A defines an n-simplex on X:

(∆n σ−→ A) 7→ (∆n σ−→ A ⊂ X).

The induced map Sn(A) → Sn(X) is injective. Hence we are going to identify
Sn(A) with its image in Sn(X) and consider Sn(A) as a subgroup of Sn(X).
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Definiton: Relative chains

We define the group of relative n-chains by

Sn(X,A) := Sn(X)/Sn(A).

The group Sn(X,A) is free, since the quotient map sends basis elements to
basis elements, and is generated by the classes of n-simplices of X whose
image is not entirely contained in A.

Since the boundary operator is defined via composition with the face maps, it
satisfies

∂(Sn(A)) ⊂ Sn−1(A) ⊂ Sn−1(X).

For, if the image of σ : ∆n → X lies in A, then so does the image of the compisite
∆n−1 ↪→ ∆n → X.

Thus ∂ induces a homomorphism ∂̄ on Sn(X,A) and we have a commutative
diagram

Sn(X)

∂
��

// Sn(X,A)

∂̄
��

Sn−1(X) // Sn−1(X,A).

Since ∂ ◦ ∂ = 0 and since Sn(X)→ Sn(X,A) is surjective, we also have

∂̄ ◦ ∂̄ = 0.

We define relative n-cycles and relative n-boundaries by

Zn(X,A) := Ker (∂̄ : Sn(X,A)→ Sn−1(X,A)) and

Bn(X,A) := Im (∂̄ : Sn+1(X,A)→ Sn(X,A)).



3

Definition: Relative homology

The nth relative homology group of the pair (X,A) is defined as

Hn(X,A) := Zn(X,A)/Bn(X,A).

Roughly speaking, relative homology groups measure the difference between
the homology of X and the homology of A. Let us try to make this more precise.
That an n-chain c in Sn(X) represents a relative n-cycle means that ∂̄(c̄) = 0
in Sn(X)/Sn(A), i.e., ∂(c) ∈ Sn(A). Hence it just means that the imgage of the
boundary of c lies in A.

So let us consider the preimage of Zn(X,A) under the quotient map Sn(X)→
Sn(X,A) and define

Z ′n(X,A) := {c ∈ Sn(X) : ∂(c) ∈ Sn−1(A)}.

Similarly, that an n-chain c in Sn(X) represents a relative n-boundary means
that there is an n+ 1-chain b such that

c ≡ ∂(b) mod Sn(A), i.e., c− ∂(b) ∈ Sn(A).

Hence the preimage of Bn(X,A) under the quotient map is

B′n(X,A) := {c ∈ Sn(X) : ∃ b ∈ Sn+1(X) such that c− ∂(b) ∈ Sn(A)}.

Now we observe that Zn(X,A) = Z ′n(X,A)/Sn(A) (since Sn(X,A) is Sn(X)/Sn(A))
and Bn(X,A) = B′n(X,A)/Sn(A). Hence we get

Hn(X,A) =
Zn(X,A)

Bn(X,A)
=
Z ′n(X,A)/Sn(A)

B′n(X,A)/Sn(A)
=
Z ′n(X,A)

B′n(X,A)
.

In other words, we could also have used the latter quotient to define Hn(X,A).

Empty subspaces

As a special case with A = ∅ we get

Z ′n(X,∅) = Zn(X), B′n(X,∅) = Bn(X), and Hn(X,∅) = Hn(X).

Now let us have a look at two examples to see how the images of simplices in
Hn(X) and Hn(X,A) can differ.
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Example: Relative cycles on the cylinder

Let X = S1 × [0,1] be a cyclinder over the circle, and let the subspace
A = S1 × 0 ⊂ X be the bottom circle.
We construct an element in the relative homology H1(X,A) by taking a
1-simplex

σ : ∆1 → X,

(te1, (1− t)e0) 7→ (cos(2πt), sin(2πt),1).

Since σ is a closed curve in X, we have σ(e0) = σ(e1). Hence its boundary
vanishes:

∂(σ) = σ(e1)− σ(e0) = 0.

Therefore, σ ∈ Z1(X) ⊂ Z ′1(X,A). We will see very soon, that σ, in fact,
represents a nontrivial class in H1(X).
However, the image of σ in the relative homology group H1(X,A) vanishes.
For, consider the 2-chains τ1 and τ2 as indicated in the picture. Then we
have

∂(τ1 + τ2) = d0(τ1)− d1(τ1) + d2(τ1) + d0(τ2)− d1(τ2) + d2(τ2)

= σ − β + γ + β − γ + α

= σ + α with α ∈ S1(A).

Hence, modulo S1(A), we have σ ∈ B1(X,A) and

[σ] = 0 in H1(X,A).
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And the second example:

Example: Relative cycles on ∆n

Let us look the standard n-simplex X = ∆n as a space on its own. We
would like to study it relative to its boundary

∂∆n :=
⋃
i

Imφni ≈ Sn−1

which is homeomorphic to the n− 1-dimensional sphere.
There is a special n-simplex in Singn(∆n) ⊂ Sn(∆n), called the universal
n-simplex, given by the identity map ιn : ∆n → ∆n. It is not a cycle,
since its boundary ∂(ιn) ∈ Sn−1(∆n) is the alternating sum of the faces of
the n-simplex each of which is a generator in Sn−1(∆n):

∂(ιn) =
∑
i

(−1)iφni (∆n−1) 6= 0.

However, each of these singular simplices lies in ∂∆n, and hence ∂(ιn) ∈
Sn−1(∂∆n).
Thus the class ῑn ∈ Sn(∆n,∂∆n) is a relative cycle. We will see later
that the relative homology group Hn(∆n,∂∆n) is an infinite cyclic group
generated by [ῑn].
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• Long exact sequences

Back to the general case. So let (X,A) be a pair of spaces. We know that
the inclusion map i : A ↪→ X induces a homomorphism Hn(i) : Hn(A)→ Hn(X).
Moreover, the map of pairs j : (X,∅)→ (X,A) induces a homomorphism

Hn(j) : Hn(X) ∼= Hn(X,∅)→ Hn(X,A).

We claim that there is yet another interesting map.

Connectng homomorphism

For all n, there is a connecting homomorphism, which is often also called
boundary operator and therefore usually also denoted by ∂,

∂ : Hn(X,A)→ Hn−1(A), [c] 7→ [∂(c)]

with c ∈ Z ′n(X,A).

Let us try to make sense of this definition: We just learned that we can represent
an element in Hn(X,A) by an element c ∈ Z ′n(X,A). Then ∂(c) is an element in
Sn−1(A). In fact, ∂(c) is a cycle, since it is a boundary and therefore

∂(∂(c)) = 0.

In particualar, ∂(c) represents a class in the homology Hn−1(A). Hence we can
send [c] under the connecting homomorphism to be the class [∂c] ∈ Hn−1(A).

It remains to check that this is well-defined, i.e., if we choose another
representative for the class [c] we need to show that we obtain the same class
[∂(c)].

Another representative of [c] in Z ′n(X,A) has the form c + ∂(b) + a with b ∈
Sn+1(X) and a ∈ Sn(A). Then we get

∂(c+ ∂(b) + a) = ∂(c) + ∂(a).

But, since ∂(a) ∈ Bn−1(A), we get

[∂(c)] = [∂(c) + ∂(a)] in Hn−1(A).

Thus, the connecting map is well-defined. And it is a homomorphism, since ∂
is a homomorphism.

Hence we get a sequence of homomorphisms

Hn(A)
Hn(i)−−−→ Hn(X)

Hn(j)−−−→ Hn(X,A)
∂−→ Hn−1(A).
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It is an exercise to check that the connecting homomorphism is natural:

The connecting homomorphism is functorial

For any f ∈ C((X,A),(Y,B)), the following diagram commutes

Hn(X,A)

∂
��

Hn(f)
// Hn(Y,B)

∂
��

Hn−1(A)
Hn−1(f|A)

// Hn−1(B).

In fact, the existence of the connecting map, the above sequence and its prop-
erties can be deduced by a purely algebraic process, that we will recall below.
For, the relative chain complex fits into the short exact sequence of chain
complexes

0→ S∗(A)→ S∗(X)→ S∗(X,A)→ 0.

Such a sequence induces a long exact sequence in homology of the form

· · ·
Hn+1(i)

// Hn+1(X,A)

∂

tt

Hn(A)
Hn(i)

// Hn(X)
Hn(j)

// Hn(X,A)

∂

tt

Hn−1(A)
Hn−1(i)

// · · ·

A digression to homological algebra

Maps of chain complexes

Let A∗ and B∗ be two chain complexes. A morphism of chain complexes
f∗ : A∗ → B∗ is a sequence of homomorphisms {fn}n∈Z

fn : An → Bn such that fn−1 ◦ ∂An = ∂Bn ◦ fn for all n ∈ Z.
A homomorphism of chain complexes induces a homomorphism on homol-
ogy

Hn(f) : Hn(A∗)→ Hn(B∗), [a] 7→ [fn(a)].

Check, as an exercise, that this is well-defined.
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Consider a short exact sequence of chain complexes

0→ A∗
f∗−→ B∗

g∗−→ C∗ → 0,(1)

i.e., for every n, the corresponding sequence of abelian groups is exact.

Since f∗ and g∗ are homomorphisms of chain complexes, they induce maps
on homology groups

Hn(A∗)
Hn(f)−−−→ Hn(B∗)

Hn(g)−−−→ Hn(C∗).(2)

Since gn ◦ fn = 0, we know Hn(g) ◦Hn(f) = 0.

But is the sequence exact at Hn(B∗), i.e., is Ker (Hn(g)) = Im (Hn(f))?

Let us look at an extended picture of the short exact sequence:

0 // An+1

fn+1
//

∂A
��

Bn+1

gn+1
//

∂B
��

Cn+1

∂C
��

// 0

0 // An
fn

//

∂A
��

Bn
gn

//

∂B
��

Cn

∂C
��

// 0

0 // An−1

fn−1
// Bn−1

gn−1
// Cn−1

// 0

(3)

Let [b] ∈ Hn(B∗) such that Hn(g)([b]) = 0. In fact, [b] is represented by a
cycle, i.e., some b ∈ Bn with ∂B(b) = 0. Since Hn(g)([b]) = 0, there is some
c̄ ∈ Cn+1 such that ∂C(c̄) = gn(b). By exactness of (1), gn+1 is surjective and
there is some b̄ ∈ Bn+1 with gn+1(b̄) = c̄.

Now we can consider ∂B(b̄) ∈ Bn, and have gn(∂B(b̄)) = ∂C(c̄) in Cn. What is
the difference b− ∂B(b̄)?

Well, it maps to 0 in Cn. By exactness of (1), there is some a ∈ An such that
fn(a) = b− ∂B(b̄). Is a a cycle, and hence does it represent a homology class?

We know

fn−1(∂A(a)) = ∂A(fn(a)) = ∂B(b− ∂B(b̄)) = ∂B(b)− ∂B(∂B(b̄)) = ∂B(b).

But we assumed ∂B(b) = 0. Thus fn−1(∂A(a)) = 0. But since fn−1 is injective,
this implies ∂A(a) = 0. Hence a is indeed a cycle, and therefore represents a
homology class [a] ∈ Hn(A∗). It also follows

Hn(f)([a]) = [b− ∂B(b̄] = [b].

Thus sequence (2) is exact.



9

However, the map Hn(A∗)
Hn(f∗)−−−−→ Hn(B∗) may fail to be injective and the

map Hn(B∗)
Hn(g∗)−−−−→ Hn(C∗) may fail to be surjective. That means sequence

(2) does not fit into a short exact sequence, in general.

But we can connect all these sequences together for varying n and obtain a
long exact sequence:

The homology long exact sequence

Let 0→ A∗
f∗−→ B∗

g∗−→ C∗ → 0 be a short exact sequence of chain complexes.
Then, for ach n, there is a functorial homomorphism

∂ : Hn(C∗)→ Hn−1(A∗)

such that the sequence

· · ·
Hn+1(f∗)

// Hn+1(C∗)

∂

tt

Hn(A∗)
Hn(f∗)

// Hn(B∗)
Hn(g∗)

// Hn(C∗)
∂

tt

Hn−1(A∗)
Hn−1(f∗)

// · · ·

is exact.

Proof: This is a typical example of a diagram chase. We will illustrate it by
constructing the connecting homomorphism ∂ and leave the rest as an exercise.
It is more fun and, in fact, easier to do it yourself than to read it. All we need is
to look again at the extended picture (3) of the short exact sequence above.

To construct ∂ : Hn(C∗) → Hn−1(A∗), let c ∈ Cn be a cycle. Since gn is
surjective, there is a b ∈ Bn with gn(b) = c. Since ∂C(c) = 0 and the diagram
commutes, we get gn−1(∂B(b)) = ∂C(gn(b)) = ∂C(c) = 0. Since the horizontal
sequences are exact, this implies there is an a ∈ An−1 with fn−1(a) = ∂B(b). In
fact, there is a unique such a because fn−1 is injective.

Moreover, we claim that this a is a cycle. For, since the diagram commutes,
we have fn−2(∂A(a)) = ∂B(fn−1(a)) = ∂B(∂B(b)) = 0. Since fn−2 is injectve,
this implies ∂A(a) = 0.

This means a represents a homology class and we define ∂ by sending the class
of c to the class of a.
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But we need to check that this does not depend on the choices we have made.
So let b′ ∈ Bn be another element with gn(b′) = c, and let a′ ∈ An−1 be the
element that we find as above. Then we need to show [a′] = [a] in Hn−1(A∗), i.e.,
that a′ − a is a boundary. So we need an ā ∈ An such that ∂A(ā) = a′ − a. We
know gn(b′−b) = c−c = 0. By exactness, there is an ā ∈ An with fn(ā) = b′−b.
Since the diagram commutes, we have fn−1(∂A(ā)) = ∂B(b′)− ∂B(b). But we also
have fn−1(a′ − a) = ∂B(b′)− ∂B(b) by definition of a′ and a. Hence, since fn−1 is
injective, we must have ∂A(ā) = a′ − a.

Finally, it is also clear from the construction that if c is a boundary, then a is
zero.

This proves the existence of ∂. Moreover, we know already that the induced
homology sequence is exact at Hn(B∗). It remains to check exactness at Hn(A∗)
and Hn(C∗). This is left as an exercise. QED

Why do we care about long exact sequences?

Well, they are extemely useful. For example, for a pair of space (X,A), if
we can show Hn+1(X,A) = 0 and Hn(X,A) = 0, then Hn(A) ∼= Hn(X).
Long exact sequences will be one of the main computational tools for
studying interesting homology groups.

Furthermore, there is the famous Five Lemma (here in one of its variations):

Five Lemma

Suppose we have a commutative diagram

A1
//

f1
��

A2
//

f2
��

A3
//

f3
��

A4
//

f4
��

A5

f5
��

B1
// B2

// B3
// B4

// B5

with exact rows. Then
• If f2 and f4 are surjective and f5 injective, then f3 is surjective.
• If f2 and f4 are injective and f1 surjective, then f3 is injective.

In particular, if f1, f2, f4, and f5 are isomorphisms, then f3 is an isomor-
phism.

The proof is another diagram chase and left as an exercise. You should defi-
nitely do it, it’s fun!
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Here we rather state two consequences:

• Given a map of short exact sequences

0 // A′ //

f ′

��

A //

f

��

A′′ //

f ′′

��

0

0 // B′ // B // B′′ // 0

in which f ′ and f ′′ are isomorphisms. Then f is an isomorphism.
• Back in topology, let f : (X,A) → (Y,B) be a map of pairs of spaces. If

any two of A → B, X → Y and (X,A) → (Y,B) induce isomorphisms,
then so does the third. This observation will simplify our life a lot.
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