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Lecture 06

6. The Eilenberg-Steenrod Axioms

Singular homology can in fact be unquely characterized by a quite short list
of properties some of which we have already checked. This list of properties is
called the Eilenberg-Steenrod Axioms. We are now going to formulate them
in general and will then discuss the relation to singular homology as we defined
it.

First some preparations:
We denote by Top2 the category of pairs of topological spaces. Two continuous
maps f0,f1 : (X,A) → (Y,B) between pairs are called homotopic, denoted f0 '
f1, if there is a continuous map

h : X × [0,1]→ Y

such that, for all x ∈ X,

h(x,0) = f0(x), h(x,1) = f1(x), and h(A× [0,1]) ⊂ B.

For A ⊂ X, we call

A◦ =
⋃
U⊂A

U with U open in X

the interior of A and

Ā =
⋂
A⊂Z

Z with Z closed in X

the closure of A.

Eilenberg-Steenrod Axioms

A homology theory (for topological spaces) h consists of:
• a sequence of functors hn : Top2 → Ab for all n ∈ Z and
• a sequence of functorial connecting homomorphisms

∂ : hn(X,A)→ hn−1(A,∅) =: hn−1(A)

which satisfy the following properties:
• Dimension Axiom: hq(pt) is nonzero only if q = 0.
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• Long exact sequences: For any pair (X,A), the sequence

· · · ∂−→ hn(A)
hn(i)−−−→ hn(X)

hn(j)−−−→ hn(X,A)
∂−→ hn−1(A)

∂−→ · · ·
is exact, where we write hn(X) := hn(X,∅).
• Homotopy Axiom: If f0,f1 : (X,A)→ (Y,B) are homotopic, then

the induced maps on homology

hn(f0) = hn(f1) : hn(X,A)→ hn(Y,B)

for all n ∈ Z.
• Excision Axiom: For every pair of spaces (X,A) and every U ⊂ A

with Ū ⊂ A◦ the homomorphism

hn(k) : hn(X \ U,A \ U)→ hn(X,A)

induced by the inclusion map k : (X \ U,A \ U) ↪→ (X,A) is an
isomorphism.
• Additivity Axiom: If X = tαXα is a disjoint union, then the

inclusion maps iα : Xα ↪→ X induce an isomorphism for every n

⊕αhn(iα) :
⊕
α

hn(Xα)
∼=−→ hn(tαXα).

We have already shown that singular homology satisfies the dimension axiom
and the connectiong homomorphism fits into long exact sequences. It remains to
check homotopy invariance and excision. But before we do that we will assume
these properties for a moment and use them to compute some homology groups.

First an important consequence of the homotopy axiom:

Proposition: Homotopy invariance of homology

Let f : (X,A) → (Y,B) be a map of pairs which is a homotopy equiva-
lence, i.e., there is a map g : (Y,B)→ (X,A) such that g ◦ f ' id(X,A) and
f ◦ g ' id(Y,B). Then f induces an isomorphism

Hn(f) : Hn(X,A)
∼=−→ Hn(Y,B)

in homology for all n.
In other words, homology is invariant under homotopy equivalences,
not just homeomorphisms.
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Recall that, for n ≥ 1, we write Dn for the n-dimensional unit disk

Dn = {x = (x1, . . . ,xn) ∈ Rn : |x|2 =
∑
i

x2i ≤ 1}.

Recall that Dn is homotopy equivalent to a point. For, the constant map Dn →
{0} is a strong deformation retraction with homotopy

h : Dn × [0,1]→ Dn, (x,t) 7→ (1− t)x

between the identity map of Dn and the constant map.

As a consequence of the homotopy axiom and our computation of Hn(pt)
we get:

Corollary for contractible spaces

Recall that a space which is homotopy equivalent to a one-point space is
called contractible. For every contractible space X, we have

Hq(X) =

{
Z q = 0

0 q 6= 0.

Before we look at an application of the axioms, a remark on homology theories
with a brief outlook to the future (of your studies in algebraic topology):

A remark on homology theories

In fact, if we require h0(pt) = Z the above propierties or axioms characterize
singular homology uniquely. In other words, if h satisfies the Eilenberg-
Steerod axioms, then h must be singular homology.
We will see later that we can define variations of singular homology with
coefficients different from Z. If R is a commutative ring with unit and M an
R-module, then there are singular homology groups Hn(X;M) which fit into
a homology theory which satisfies the dimension axiom with h0(pt) = M .
We can even go a step further (in a different class) where we drop the
dimension assumption allow hq(pt) 6= 0 for infinitely many n. This leads to
generalized homology theories, for example K-theory or cobordism,
which are extremely useful for the solution of many fundamental problems,
not just in topology. For example, complex K-theory can be used to
show the theorem me mentioned in the notes of the first lecture: only in
dimensions 1, 2, 4, and 8 there is a nice multiplication on Rn.
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• Homology of the sphere

As a fundamental example we are going to compute the homology of the k-
dimensional sphere Sn. Actually, we already know one case. For, S0 is just the
disjoint union of two points. Hence Hq(S

0) ∼= Z⊕Z for q = 0 is 0 for all other n.

Theorem: Homology of the sphere

For n ≥ 1, we have

Hq(S
n) =

{
Z if q = 0 or q = n

0 otherwise

and

Hq(D
n,Sn−1) =

{
Z q = n

0 otherwise.

Proof of the Theorem: For n ≥ 1, the n-sphere Sn is path-connected. By
our previous result, that implies H0(S

n) ∼= Z.

The proof will proceed by induction using the long exact sequence in homology
for pairs of spaces. This explains why we compute Hq(S

n) and Hq(D
n,Sn−1) at

the same time.

For n = 1 and q = 0, the pair (D1,S0), with i : S0 ↪→ D1, is equipped with the
exact sequence

H0(S
0)

H0(i)
// H0(D

1) // H0(D
1,S0) // 0

Z⊕ Z // Z // ? // 0.

The map H0(i) is induced by the map S0(S
0) → S0(D

1) which sends a 0-
simplex ∆0 → S0 to the composite ∆0 → S0 ↪→ D1.

The image of S0 in D1 consists of the two endpoints of D1 and both points
are homologous as 0-simplices of D1. Hence they both represent the class of the
generator of H0(D

1). Hence the map H0(i) sends each generator of H0(S
0)

to the generator of H0(D
1). Writing (1,0) and 0,1) for the generators of Z⊕Z,

any (a,b) ∈ Z ⊕ Z is of the form a · (1,0) + b · (0,1). Hence (a,b) is sent to a + b
under Hn(i).
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This implies that H0(i) is surjective. Since the above sequence is exact, this
implies

H0(D
1,S0) = 0.

For n ≥ 2, the exact sequence becomes

H0(S
n−1)

H0(i)
// H0(D

n) // H0(D
n,Sn−1) // 0

Z // Z // ? // 0.

Since both Sn−1 and Dn are path-connected, their 0th homology is isomorphic
to Z and the generator ofH0(S

n−1), the class of any constant map κ0x : ∆0 → Sn−1,
is sent to the generator of H0(D

n), the class of κ0x : ∆0 → Dn corresponding to
the image point x ∈ Sn−1 ⊂ Dn. Hence H0(i) is surjective and we have again

H0(D
n, Sn−1) = 0.

This finishes the argument for H0.

For q = 1, we start with the exact sequence

H1(D
1) // H1(D

1, S0) // H0(S
0)

H0(i)
// H0(D

1)

0 // ? // Z⊕ Z // Z.

(1)

Since the sequence is exact, this shows thatH1(D
1,S0) is isomorphic to the kernel

of

Hn(i) : Z⊕ Z→ Z, (a,b) 7→ a+ b.

Thus

H1(D
1, S0) ∼= Z.(2)

For n ≥ 2, we get the sequence

H1(D
n) // H1(D

n,Sn−1) // H0(S
n−1)

∼=
// H0(D

n)

0 // ? // Z
∼=

// Z.
Since the right most map is an isomorphism, we get

H1(D
n,Sn−1) = 0 for all n ≥ 2.(3)
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In order to study further groups, we consider the subspaces

Dn
+ := {(x0, . . . ,xn) ∈ Sn : x0 ≥ 0} and Dn

− := {(x0, . . . ,xn) ∈ Sn : x0 ≤ 0}

which correspond to the upper and lower hemisphere (including the equator),
respectively, of Sn.

For n ≥ 1, we have the exact sequence

H1(D
n
−) // H1(S

n)
∼=
// H1(S

n,Dn
−)

∂=0
// H0(D

n
−)

∼=
// H0(S

n)

0 Z
∼=

// Z.

Since Dn
− is contractible, we know H1(D

n
−) = 0. Hence the map H1(S

n) →
H1(S

n,Dn
−) is injective. Since the map

Z ∼= H0(D
n
−)→ H0(S

n) ∼= Z
is an isomorphism, the connecting hmomorphism ∂ is 0. Since the sequence
is exact, this implies that the map H1(S

n)→ H1(S
n,Dn

−) is also surjective.

Thus, in total, we have an isomorphism

H1(S
n)

∼=−→ H1(S
n,Dn

−).

To finish the analysis for q = 1, we consider the open subspace

Un
− := {(x0, . . . ,xn) ∈ Sn : x0 < −1/2} ⊂ Dn

−.

Its closure is still contained in the open interior of Dn
−, i.e.,

Ūn
− ⊂ (Dn

−)◦
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Hence we can apply the excision axiom to the inclusion of pairs

k : (Sn \ Un
−, D

n
− \ Un

−) ↪→ (Sn, Dn
−)

and obtain an isomorphism

Hq(k) : Hq(S
n \ Un

−, D
n
− \ Un

−)
∼=−→ Hn(Sn, Dn

−).

But we also know

(Sn \ Un
−, D

n
− \ Un

−) ' (Dn
+, S

n−1)
≈−→ (Dn, Sn−1)

where the last homoeomorphism is given by vertical projection, and the
homotopy equivalence is the natural retraction.

In particular, we get an isomorphism

Hq(S
n, Dn

−) ∼= Hq(D
n, Sn−1).(4)

For H1, this implies

H1(S
n) ∼= H1(S

n, Dn
−) ∼= H1(D

n, Sn−1) =

{
Z if n = 1 by (2).

0 else by (3).

This finishes the case q = 1. In particular, we now know H1(S
1) ∼= Z.

Finally, for q ≥ 2, we proceed by induction. The pair (Sn,Dn
−) yields the exact

sequence

Hq(D
n
−) // Hq(S

n)
∼=
// Hq(S

n, Dn
−) // Hq−1(D

n)

0 0.

(5)

Whereas the pair (Dn,Sn−1) yields the exact sequence

Hq(D
n) // Hq(D

n, Sn−1)
∼=
// Hq−1(S

n−1) // Hq−1(D
n)

0 0.

Together with isomorphism (4), we conclude

Hq(S
n) ∼= Hq(S

n, Dn
−) ∼= Hq(D

n, Sn−1) ∼= Hq−1(S
n−1).

Hence knowing H1(S
1) = Z implies H2(S

2) = Z and H2(D
2,S1) = Z. Contin-

uing by induction on q yields the assertion of the theorem. QED
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