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Lecturer: Gereon Quick

Lecture 07

7. Generators for Hn(Sn) and first applications

Generators for Hn(Sn)

Last time we calculated the homology groups of Sn and the pair (Dn,Sn−1). To
make this calculation a bit more concrete, let us try to figure out the generators
of the infinite cyclic groups Hn(Dn, Sn−1) and Hn(Sn):

• On the standard n-simplex, there is a special n-chain Sn(∆n), called the fun-
damental n-simplex, given by the identity map ιn : ∆n → ∆n. We observed
in a previous lecture that ιn is not a cycle, since its boundary ∂(ιn) ∈ Sn−1(∆n)
is the alternating sum of the faces of the n-simplex each of which is a generator
in Sn−1(∆

n).

∂(ιn) =
∑
i

(−1)iφni (∆n−1) 6= 0.

However, each of these singular simplices lies in ∂∆n, and hence

∂(ιn) ∈ Sn−1(∂∆n).

Thus the image of ιn in Sn(∆n,∂∆n) is a relative cycle. Let us denote its image
also by ιn and its class in Hn(∆n, ∂∆n) by [ιn].

If Hn(∆n, ∂∆n) is nontrivial, then [ιn] must be a nontrivial generator. For,
if σ : ∆n → ∆n is any n-simplex of ∆n which defines a nontrivial class [σ] in
Hn(∆n, ∂∆n), then

[σ] = Hn(σ)([ιn]).

This is because ιn is the identity map and Hn(σ)([ιn]) is defined by comoposing σ
and ιn. Hence if [ιn] was trivial, then any class in Hn(∆n, ∂∆n) would be trivial.

• Now we use this observation to find a generator of Hn(Dn,Sn−1). The stan-
dard n-simplex ∆n and the unit n-disk Dn are homeomorphic. In order to find a
homeomorphism we just need to smoothen out the corners of ∆n. (Note that we
cannot ask for a diffeomorphism, since ∆n is not a smooth manifold.)

In fact, we can choose a homeomorphism of pairs

ϕn : (∆n, ∂∆n)
≈−→ (Dn, Sn−1)
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which maps ∂∆n homeomorphically to Sn−1. We will construct a concrete home-
omorphism below. For the moment, let us accept that we have such a homeo-
morphism ϕn for every n.

Then ϕn induces an isomorphism

Hn(ϕn) : Hn(∆n, ∂∆n)
∼=−→ Hn(Dn, Sn−1) with [ιn] 7→ [ϕn].

Since we now know Hn(Dn, Sn−1) ∼= Z, we also have Hn(∆n, ∂∆n) ∼= Z and [ιn]
as a generator. Thus [ϕn] is a generator of Hn(Dn, Sn−1) ∼= Z.

• Recall that we showed last time that the connecting homomorphism

∂ : Hn(Dn, Sn−1)
∼=−→ Hn−1(S

n−1)

an isomorphism. The image of [ϕn] under ∂ is a generator. In other words, [∂(ϕn)]
is a generator of Hn−1(S

n−1) for all n ≥ 2.

Constructing ϕn

For each ∆n the point c = (t0, . . . ,tn) with ti = 1
n+1

for all i is the barycen-
ter of ∆n.
For every point x ∈ ∆n which is not c, there is a unique ray from c to x.
We denote the unique point where this ray hits ∂∆n by f(x). In particular,
if x ∈ ∂∆n, then f(x) = x.

Now we define the map

ϕn : ∆n → Dn, x 7→

{
x−c
|f(x)−c| if x 6= 0

0 if x = c.
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It is clear that ϕn is continuous except possibly at x = c. But since there is a
strictly positive lower bound for |f(x)− c| > 0, we know |ϕn(x)| ≤M |x− c|
for some real number M . This implies that ϕn is also continuous at x = c.
Moreover, ϕn is a bijection, since it is one restricted to each ray. Since ∆n

is compact and ϕn is a continuous bijection, it is a homeomorphism.

Finally, we write down a generator for the unit circle.

A concrete generator of H1(S
1)

We just learned that the class [∂(ϕ2)] is a generator of H1(S
1). We can

describe this class as follows:
By definition, ∂(ϕ2) is the 1-cycle

∂(ϕ2) = d0ϕ2 − d1ϕ2 + d2ϕ2

= ϕ2 ◦ φ2
0 − ϕ2 ◦ φ2

1 + ϕ2 ◦ φ2
2.

Recall that ϕ2 maps ∂∆2 homeomorphically to S1. With this in mind, the
summands look like

ϕ2 ◦ φ2
0(1− t, t) = eiπ(−

1
6
+t 2

3
)

ϕ2 ◦ φ2
1(1− t, t) = eiπ(

7
6
−t 2

3
)

ϕ2 ◦ φ2
2(1− t, t) = eiπ(

7
6
+t 2

3
).

We proved in Lecture 03 that the 1-simplex

∆1 → ∆1, t 7→ ϕ2 ◦ φ2
1(1− t,t)
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is homologous to the 1-simplex

∆1 → ∆1, t 7→ ϕ2 ◦ φ2
1(t,1− t)

which reverses the direction of the walk from one vertex to the other.
In an exercise, we will show that after splitting a path into different steps,
the 1-chain associated to the initial path is homologous to the sum of the
1-chains associated to the parts. This result implies that the 1-cycles ∂ϕ2

is homologous to the 1-cycle corresponding to the familiar path

γ : ∆1 → S1, (1− t, t) 7→ e2πit

which walks once around the circle.
In summary, we showed that [γ] = [∂ϕ2] is the desired generator of
H1(S

1).

First applications

The calculation of the homology of spheres has many interesting consequences.
We will discuss some of them today and will see many more soon.

We start with a result we advertised in the first lecture:

Theorem: Invariance of dimension

For n 6= m, the space Rn is not homeomorphic to Rm.

Proof: Assume there was a homeomorphism f : Rn → Rm. Then the
restricted map

f : Rn \ {0} → Rm \ {f(0)}

is also a homeomorphism, since these are open subsets and f|Rn\{0} and (f−1)|Rm\{f(0)}
are still continuous mutual inverses.

We showed as an exercise that, for any k ≥ 1, Sk−1 is a strong deformation
retract of Rk\{0}. In particular, we showed Sk−1 ' Rn\{0}. Since the translation
Rn → Rn, y 7→ y + x is a homeomorphism for any x ∈ Rn, this implies that

Sk−1 ' Rk \ {x} for every x ∈ Rk.

Hence, if the homeomorphism f existed, we would get an induced isomor-
phism

Hq(S
n−1) ∼= Hq(Rn \ {0})

∼=−→ Hq(Rm \ {f(0)}) ∼= Hq(S
m−1).
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But by our calculation of the Hq(S
n−1), such an isomorphism can only exist if

n− 1 = q = m− 1. This contradicts the assumption n 6= m. QED

We can also give a short proof of Brouwer’s famous Fixed-Point Theorem:

Brouwer Fixed-Point Theorem

Let f : Dn → Dn be a continuous map of the closed unit disk into itself.
Then f must have a fixed point, i.e. there is an x ∈ Dn with f(x) = x.

Before we prove the theorem, let us have a look at dimension one, where the
result is very familiar:

Brouwer FPT is familiar in dimension one

Note that you have seen this theorem for n = 1 in Calculus 1. Let f : [0,1]→
[0,1] be a continuous map. Then it must have a fixed point. For, if not, then
g(x) = f(x) − x is a continuous map defined on [0,1]. We have g(0) ≥ 0
and g(1) ≤ 0, since f(0) ≥ 0 and f(1) ≤ 1.

If g(0) = 0 or g(1) = 1, we are done. But if g(0) > 0 and g(1) < 1, then the
Intermediate Value Theorem implies that there is an x0 ∈ (0,1) with
g(x0) = 0, i.e. f(x0) = x0.

Proof of Brouwer’s FPT: Since we know the theorem for n = 1, we assume
n ≥ 2. Suppose that there exists an f without fixed points, i.e., f(x) 6= x for
all x ∈ Dn. Then, for every x ∈ Dn, the two distinct points x and f(x)
determine a line. Let g(x) be the point where the line segment starting at f(x)
and passing through x hits the boundary ∂Dn. This defines a continuous map

g : Dn → ∂Dn.
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Let i : Sn−1 = ∂Dn ↪→ Dn denote the inclusion map. Note that if x ∈ ∂Dn,
then g(x) = x. In other words,

g ◦ i = idSn−1 .

Applying the homology functor yields a commutative diagram

Z ∼= Hn−1(S
n−1)

Hn(i) ))

idHn−1(S
n−1)

// Hn−1(S
n−1) ∼= Z

Hn−1(D
n) = 0.

Hn(g)

55

But the identity homomorphism on Z cannot factor through 0. This
contradicts the assumption that f has no fixed point. QED

The previous arguments are in fact a typical examples of proves in Algebraic
Topology:

• The topological assumption that a homeomorphism Rn ≈−→ Rm exists, is
translated by applying homology to a statement about an isomorphism
of groups. For groups, the existence of such an isomorphism is easily checked
to be false.
• The geometric assumption that there is no fixed point be expressed in
terms of maps and their compositions. Applying the homology functor
translates this statement into an analogous statement about groups and
homomorphisms and their compositions. Since the resulting statement
about groups is obviously false, the original statement about spaces must be
false as well.

Typical application of homology theory
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• The degree of a map Sn → Sn

The calculation of the homology of the sphere leads to another important
algebraic invariant.

Definition: The degree

For n ≥ 1, let f : Sn → Sn be a continuous map. Then the induced homo-
morphism

Z ∼= Hn(Sn)
Hn(Sn)−−−−→ Hn(Sn) ∼= Z

is given by multiplication with an integer, the image of 1.
We denote this integer by deg(f) and call it the degree of f .

Let us calculate a first example:

Theorem: The degree of a reflection

Let r : Sn → Sn be the reflection map defined by reversal of the first
coordinate

r : (x0,x1, . . . ,xn) 7→ (−x0,x1, . . . ,xn).

Then deg(r) = −1.

Before we start the proof, let us have a look at what happens for the reflection
map

r : D1 = [−1,1]→ [−1,1] = D1, t 7→ −t

and its restriction to S0. Recall that S0 constists of just two points, x = 1 and
y = −1 (on the real line R). The effect of r on S0 is to interchage x and y.
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The inclusion maps ix and iy induce an isomorphism

H0({x})⊕H0({y})
∼=−→ H0(S

0).

Thus H0(r) can be viewed as

H0(r) : H0(S
0)→ H0(S

0), (a,b) 7→ (b,a).

During the calculation ofHn(Sn), we remarked that the map ε := H0(i) : H0(S
0)→

H0(D
1) induced by the inclusion i : S0 ↪→ D1 can be identified with the homo-

morphism

ε : Z⊕ Z→ Z, (a,b) 7→ a+ b.

Let Ker (ε) = {(a,− a) ∈ H0(S
0) : a ∈ Z} be the kernel of ε. Then we get that

the effect of H0(r) on Ker (ε) is given by multiplication by −1:

H0(r) : Ker (ε)→ Ker (ε), (a,− a) 7→ (−a,a) = −(a,− a).

Now we can address the actual proof.

Proof of the Theorem: For n ≥ 1, let

Dn
+ := {(x0, . . . ,xn) ∈ Sn : xn ≥ 0} and Dn

− := {(x0, . . . ,xn) ∈ Sn : xn ≤ 0}

be the upper and lower hemispheres on Sn, respectively. We also denote by
r the reflection map on Dn

+ and Dn
−. (Note that we defined Dn

+ and Dn
− using a

different coordinate than for defining r so that r(Dn
+) ⊂ Dn

+ and r(Dn
−) ⊂ Dn

−.)

Then we have a commutative diagram

H1(S
1)

H1(r)

��

∼=
// H1(S

1, D1
+)

H1(r)

��

H1(D
1
−, S

0)
∼=
oo

H1(r)

��

∼=
// Ker (ε)

H0(r)

��

H1(S
1)

∼=
// H1(S

1, D1
+) H1(D

1
−, S

0)
∼=
oo

∼=
// Ker (ε).

The right hand square commutes, since the isomorphism

H1(D
1
−, S

0)
∼=−→ Ker (ε)

is part of the exact sequence induced by the pair (D1
−, S

0):

H1(D
1
−, S

0) // H0(S
0)

ε
// H0(D

1
−) // H0(D

1
−,S

0)

Z // Z⊕ Z ε
// Z // 0.
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We know that the left hand and central squares commute, since the inclusion
and the reflection commute. We know that the horizontal maps are isomorphisms
from the calculation of these groups.

Thus, knowing H0(r) = −1 on Ker (ε), we see that H1(r) is also multiplica-
tion by −1 on H1(S

1).

Now we can proceed by induction: For n ≥ 2, we have again a commutative
diagram from the calculation of Hn(Sn):

Hn(Sn)

Hn(r)

��

∼=
// Hn(Sn, Dn

+)

Hn(r)

��

Hn(Dn
−, S

n−1)
∼=
oo

Hn(r)

��

∼=
// Hn−1(S

n−1)

Hn−1(r)

��

Hn(Sn)
∼=
// Hn(Sn, Dn

+) Hn(Dn
−, S

n−1)
∼=
oo

∼=
// Hn−1(S

n−1).

The right most square commutes by an exercise from last week. The left hand
and central squares commute, since the inclusion and the reflection commute.

Assuming the assertion for n− 1, i.e., Hn−1(r) is multiplication by −1, we see
that Hn(r) is also multiplication by −1. QED
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