
MA3403 Algebraic Topology
Lecturer: Gereon Quick

Lecture 08

8. Calculating degrees

In last week’s exercises we showed many useful properties of the degree and
calculated the degree of some interesting maps. Today, we are going to continue
our study of the degree.

But before we move on, another reason why the degree is so important:

Brouwer degree

Let p be an arbitrary point in Sn. We consider p as the base point of
Sn. Let C(Sn,Sn)∗ be the set of pointed continuous maps, i.e., maps
f : Sn → Sn with f(p) = p. Pointed homotopy defines an equivalence
relation on this set. Hence we can define the quotient set

[Sn, Sn]∗ := C(Sn, Sn)∗/ '
where we identify f and g if they are homotopic to each other f ' g.
Now the degree defines a function from C(Sn,Sn)∗ to the integers Z. Since
the degree is invariant under homotopy, i.e., f0 ' f1 implies deg(f0) =
deg(f1), it induces a function

deg : [Sn, Sn]∗ → Z, f 7→ deg(f).

This function is actually an isomorphism of abelian groups. In fancier
language, we write πn(Sn) = [Sn, Sn]∗, call it the nth homotopy group
of Sn and say that the degree completely determines πn(Sn).

Now let us see what kind of maps between spheres there. Actually, such maps
arise quite naturally. For, every invertible real n× n-matrix A defines a homeo-

morphism between Rn ≈−→ Rn. It extends to a homeomorphism on the one-point
compactification Sn of Rn and therefore defines a map

A : Sn → Sn.

A more direct way to produce a map is to assume we have an orthogonal
matrix:
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Orthogonal matrices

Let O(n) denote the group of orthogonal (real) n× n-matrices, i.e.,

O(n) = {A ∈M(n× n,R) : ATA = I}
where I is the identity matrix. The restriction to Sn−1 of any A in O(n)
defines a map

A : Sn → Sn, x 7→ Ax.

The degree of this map is detA, i.e., deg(A) = det(A) = ±1.

Proof: This follows from the fact that every othogonal matrix is the product
of reflections (at appropriate hyperplanes in Rn). A reflection has determinant
−1, but it also has degree −1 as we have shown before. Since both deg and det
are multiplicative, the result follows. QED

Now let A ∈ GLn(R) be an invertible n× n-matrix. It defines a map

f : Rn \ {0} → Rn \ {0}, f(x) := Ax.

It induces a map

Hn−1(f) : Hn−1(Rn \ {0})→ Hn−1(Rn \ {0}).

Since Sn−1 ↪→ Rn \ {0} is a deformation retract, we know

Z ∼= Hn−1(S
n−1) ∼= Hn−1(Rn \ {0}).

Hence the effect of Hn−1(A) is given by multiplication by an integer.

Proposition: It’s the sign

Hn−1(A) = sign(det(A)) where sign(det(A)) denotes the sign, i.e., 1 or −1,
of det(A).

Proof: Recall from linear algebra that any invertible matrix A has a po-
lar decomposition A = BC with B a symmetric matrix with only positive
eigenvalues and C ∈ O(n). Since we already know that the assertion is true
if A ∈ O(n), it suffices to show that B is homotopic to the identity as maps
Rn → Rn.

Since all eigenvalues of B are positive, we know det(B) > 0. Hence B and I lie
both in the component GLn(R)+ of the matrices with det > 0. The continuous
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map

Γ: [0,1]→ GLn(R)+, t 7→ tI + (1− t)B

defines a homotopy between I and B.

To check that Γ(t) is in GLn(R)+ for all t, we observe that the eigenvalues of
Γ(t) are all strictly positive. For, let λ be an eigenvalue of B. Then t+ (1− t)λ
is an eigenvalue of Γ(t), since all nonzero vectors are eigenvectors of tI. This
implies det(Γ(t)) > 0. QED

For n > 1, we know Hn(Rn,Rn \ {0}) ∼= Z, since (Dn, Sn−1) ↪→ (Rn,Rn \ {0})
is a deformation retract. For A as above, we obtain a commutative diagram from
the long exact sequences of pairs

Hn(Rn,Rn \ {0})

��

Hn(A)
// Hn(Rn,Rn \ {0})

��

Hn−1(Rn \ {0})
Hn−1(A)

// Hn−1(Rn \ {0}).

The vertical connecting homomorphisms are isomorphisms, since they are iso-
morphisms for the pair (Dn, Sn−1). Since the diagram commutes, we deduce the
following consequence from the previous result:

Corollary

The effect of the map

Hn(A) : Hn(Rn,Rn \ {0})→ Hn(Rn,Rn \ {0})
is given by multiplication with sign(det(A)).

Now we would like to apply this to a situation familiar from Calculus. First a
brief observation:

Lemma

Let U ⊂ Rn be an open subset and x ∈ U . Then

Hn(U,U \ {x}) ∼= Z.

Proof: Let Z be the complement of U in Rn. Since U is open, Z is closed.
Hence Z̄ = Z ⊂ Rn \ {x} = (Rn \ {x})◦. Hence we can apply excision to the
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inclusion of pairs (U,U \ {x}) ↪→ (Rn,Rn \ {x}) and get

Hn(U,U \ {x})
∼=−→ Hn(Rn,Rn \ {x}) ∼= Z.

QED

Proposition: Degree of smooth maps

Let U ⊂ Rn open with 0 ∈ U . Let

f : U → Rn

be a smooth map (or say twice differentiable with continuous second deriva-
tives) with f−1(0) = 0 and Df(0) ∈ GLn(R).
For such a map f , the effect of the homomorphism

Hn(f) : Hn(U,U \ {0})→ Hn(Rn,Rn \ {0})
is given by multiplication with sign(det(Df(0))).

Proof: • By the Taylor expansion of a differentiable map, we can write f
as

f(x) = Ax+ g(x) with A = Df(0) and g(x)/|x| → 0 for x→ 0.

• In particular, we can assume |g(x)| < |x|/2 for x small enough. By excision,
we can shrink U to become small enough such that still 0 ∈ U and |g(x)| < |x|/2
for all x ∈ U .

• We can further assume that A = I is the identity. For if not, we can replace
f with A−1f and use the functoriality of Hn.

• Now we have |f(x)− x| < x/2 for all x ∈ U . Hence the map

h : U × [0,1]→ Rn, (x,t) 7→ tf(x) + (1− t)x

satisfies h(x,t) 6= 0 for all (x,t). This implies that Dh(0,t) is in GLn(R)+ for all
t. Thus h defines a homotopy between f and the identity map and the effect of
Hn(f) is the same as the oneof the identity map. QED

Local degree

Often the effect of a map can be studied by focussing on the neighborhood
of certain interesting points. We would like to exploit this idea for studying the
degree.
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For n ≥ 1, let f : Sn → Sn be a map with the property that there is a point
y ∈ Sn such that f−1(y) consists of finitely many points. (Note that almost all
maps have this property.)

We label these points by x1, . . . ,xm. Now we choose small disjoint open neigh-
borhoods U1, . . . ,Um of each xi such that each Ui is mapped into an open neigh-
borhood V of y in Sn. (We could choose V first, and then intersect f−1(V ) with
small open disks around xi...).

Since xi ∈ Ui and the different Ujs are disjoint, we have

f(Ui \ {xi}) ⊂ V \ {y} for each i.

For any given i, the obvious inclusions of pairs induce the following diagram:

Hn(Ui, Ui \ {xi})
∼=

tt

ki
��

Hn(f|Ui
)

deg(f |xi)
// Hn(V, V \ {y})

∼=
��

Hn(Sn, Sn \ {xi}) Hn(Sn, Sn \ f−1(y))
pi
oo

Hn(f)
// Hn(Sn, Sn \ {y})

Hn(Sn)

∼=

jj

j

OO

Hn(f)
// Hn(Sn).

∼=

OO

(1)

By the excision axiom applied as in the proof of the lemma below and by an
exercise, we know that the diagonal maps on the left and the vertical maps on
the right are isomorphisms, as indicated in (1).

Definition: Local degree

The source and target of the dotted top horizontal arrow in (1) are identified
with Z. Hence the effect of this homomorphism is given by mutliplication
by an integer. We denote this integer by deg(f |xi) and call it the local
degree of f at xi.

Let us calculate some examples:

• If f is a homeomorphism, then any y has a unique preimage x. In this
case, all maps in daigram (1) are isomorphisms and we have

deg(f) = deg(f |x) = ±1.

• If f maps each Ui homeomorphically to V , then we have deg(f |xi) = ±1
for each i.
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The latter observation can be used to calculate the degree of f in many in-
teresting situations. For we have the following result which connects global and
local degrees:

Proposition: Global is the sum of local

With the above assumptions we have

deg(f) =
m∑
i=1

deg(f |xi).

We are going to prove this result in the next lecture. In the diagram above we
claimed that some maps are isomorphisms. Here is an explanation why:

Lemma

(a) Let U ⊂ Sn be an open subset and x ∈ U . Then there is an isomorphism

Hn(U,U \ {x})
∼=−→ Hn(Sn, Sn \ {x}) ∼= Z.

(b) Let x1, . . . ,xm be m distinct points in Sn and U1, . . . ,Um disjoint open
neighborhoods with xi ∈ Ui. Then there is an isomorphism

⊕m
i=1Hn(Ui, Ui \ {xi})

∼=−→ Hn(Sn, Sn \ {x1, . . . ,xm}) ∼= ⊕m
i=1Z.

Proof: (a) Let Z be the complement of U in Rn. Since U is open, Z is
closed. Hence Z̄ = Z ⊂ Sn \ {x} = (Sn \ {x})◦ = Sn \ {x}. Hence we can apply
excision to the inclusion of pairs (U,U \{x}) ↪→ (Sn, Sn\{x}) and get the above
isomorphism.

(b) Let U := ∪iUi. Then Z := Sn \ U is closed. As above, we can apply
excision to the inclusion of pairs (U,U \ {x1, . . . ,xm}) ↪→ (Sn, Sn \ {x1, . . . ,xm})
and get an isomorphism

Hn(U,U \ {x1, . . . ,xm})
∼=−→ Hn(Sn, Sn \ {x1, . . . ,xm}).

Since U is actually a disjoint union and each xi ∈ Ui, we know the inclusions
induce an isomorphism

⊕m
i=1Hn(Ui, Ui \ {xi})

∼=−→ Hn(U,U \ {x1, . . . ,xm}).
Together with (a) this proves the assertion. QED
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