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Lecture 10

10. Homotopies of chain complexes

We still need to prove the Homotopy Axiom and Excision Axiom for singular
homology. The prove will follow from constructing a homotopy between chain
complexes, a concept we are now going to explore.

Recall that a chain complex K∗ = (K∗,∂
K) constists of a sequence of abelian

groups

· · ·
∂K
n+2−−−→ Kn+1

∂K
n+1−−−→ Kn

∂K
n−→ Kn−1

∂K
n−1−−−→ · · ·

together with homomorphisms ∂K
n : Kn → Kn−1 with the property that ∂n−1◦∂n =

0. Our main example is the singular chain complex.

Just to make sure that we understand the definition, let us look at an example
of a sequence of groups that is not a chain complex. Consider the sequence of
maps

· · · 2−→ Z 2−→ Z 2−→ Z 2−→ Z 2−→ · · ·

where each map consists of multiplication by 2. This is not a chain complex,
since 2 · 2 = 4, i.e., ∂n−1 ◦ ∂n = 4 6= 0.

Recall the definition of a map of chain complexes from Lecture 5:

Maps of chain complexes

Let K∗ = (K∗, ∂
K) and L∗ = (L∗, ∂

L) be two chain complexes. A mor-
phism of chain complexes f∗ : K∗ → L∗, also called chain map, is a
sequence of homomorphisms {fn}n∈Z

fn : Kn → Ln such that fn−1 ◦ ∂K
n = ∂L

n ◦ fn for all n ∈ Z.(1)

A homomorphism of chain complexes induces a homomorphism on homol-
ogy

Hn(f) : Hn(K∗)→ Hn(L∗), [x] 7→ [fn(x)].

We need to check that this is well-defined. Since we hopped over this point
in Lecture 5, let us do it now.
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There are two things we should check. We need to know that f sends cycles
to cycles and boundaries to boundaries.

First, let x ∈ Kn be a cycle in K, i.e., ∂K
n (x) = 0. Then (1) implies

∂L
n (fn(x)) = fn−1(∂

K
n ((x)) = fn−1(0) = 0.

Thus fn(x) is a cycle in L and we get fn(Zn(K∗)) ⊂ Zn(L∗).

Second, let a x ∈ Kn be a boundary, say ∂K
n+1(y) = x. Then (1) implies

fn(x) = fn(∂K
n+1(y)) = ∂L

n+1(fn+1(y)).

Thus fn(x) is a boundary in L and we get fn(Bn(K∗)) ⊂ Bn(L∗). This shows
that f induces a well-defined homomrphism between the homologies of K∗ and
L∗.

We would like to transfer the notion of homotopies between maps of spaces
to the homotopies between maps of chain complexes. This follows the general
slogan: Homotopy is a smart thing to do.

Why? The notion of an isomorphism in a category, e.g. the category of
topological spaces or the category of chain complexes, is often too rigid. There
are too few isomorphism such that classifying objects up to isomorphism is too
difficult. Therefore, one would like to relax the conditions. For many situations,
homotopy turns out to provide the right amount of flexibility and rigidity
at the same time. Moreover, many invariants, in fact all invariants in Algebraic
Topology, do not change if we alter a map by a homotopy.

In other words, our invariants only see the homotopy type.

Actually, this is exactly what we are going to show for singular homology today.
It is also true in Homological Algebra. The homology of a chain complex only
depends on the homotopy type of the complex.

So let us define homotopies between chain maps:

Definition: Homotopies of chain maps

Let f, g : K∗ → L∗ be two morphisms of chain complexes. A chain homo-
topy between f and g is a sequence of homomorphisms

hn : Kn → Ln+1

such that

fn − gn = ∂L
n+1 ◦ hn + hn−1 ◦ ∂K

n for all n ∈ Z.(2)



3

Kn+1

∂K
n+1

��

// Ln+1

∂L
n+1

��

Kn

∂K
n

��

fn−gn
//

hn

;;

Ln

∂L
n

��

Kn−1 //

hn−1

;;

Ln−1

If such a homotopy exists, we are going to say that f and g are homotopic
and write f ' g.
We say that f is null-homotopic if f ' 0.

As for topological spaces, this yields an equivalence relation:

Lemma: Homotopy is an equivalence relation

(1) Chain homotopy is an equivalence relation on the set of all morphisms
of chain complexes.
(2) If f ' f ′ : K∗ → L∗ and g ' g′ : L∗ →M∗, then g ◦ f ' g′ ◦ f ′.

Proof: (1) We need to show that homotopy is reflexive, symmetric and tran-
sitive:

• We obtain f ' f with h = 0 being the zero map.
• If h is a homotopy which gives f ' g, then −h is a homotopy which shows
g ' f .
• If h is a homotopy which gives f ' g : K∗ → L∗ and h′ is a homotopy

which shows g ' k : K∗ → L∗, then h + h′ is a homotopy which shows
f ' k. For

fn − kn = fn − gn + gn − kn

= ∂L
n+1 ◦ hn + hn−1 ◦ ∂K

n + ∂L
n+1 ◦ h′n + h′n−1 ◦ ∂K

n

= ∂L
n+1 ◦ (hn + h′n) + (hn−1 + h′n−1) ◦ ∂K

n .

(2) Let h be a homotopy which shows f ' f ′ and k be a homotopy which
shows g ' g′. Composition with g on the left and using that g is a chain map
yields

gn ◦ (fn − f ′n) = gn ◦ (∂L
n+1 ◦ hn + hn−1 ◦ ∂K

n )

= ∂M
n+1 ◦ (gn+1 ◦ hn) + (gn ◦ hn−1) ◦ ∂K

n .
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This shows that the sequence of maps gn+1 ◦hn defines a homotopy g ◦ f ' g ◦ f ′.

Composition with f ′ on the right and using that f ′ is a chain map yields

(gn − g′n) ◦ f ′n = (∂M
n+1 ◦ kn + kn−1 ◦ ∂L

n ) ◦ f ′n
= ∂M

n+1 ◦ (kn ◦ f ′n) + (kn−1 ◦ f ′n−1) ◦ ∂K
n .

This shows that the sequence of maps kn ◦ f ′n defines a homotopy g ◦ f ′ ' g′ ◦ f ′.

summarizing we have shown

g ◦ f ' g ◦ f ′ ' g′ ◦ f ′.
By transitivity, this shows the desired result. QED

Now we are ready to show an important fact in homological algebra:

Homology identifies chain homotopies

If f ' g : K∗ → L∗ are homotopic morphisms of chain complexes, then

Hn(f) = Hn(g) for all n ∈ Z.

Proof: This follows immediately from the fact that fn − gn is just given by
boundaries which, by definition, vanish in homology.

More concretely, let x ∈ Kn be an arbitrary cycle in Kn and let h be a homotopy
which gives f ' g. Then we get by using the definition of homotopies

Hn(f)([x]) = [fn(x)] = [gn(x) + ∂L
n+1(hn(x)) + hn−1(∂

K
n (x))] = [gn(x)] = Hn(g)([x])

where we use that ∂L
n+1(hn(x)) is obviously a boundary in Ln and that hn−1(∂

K
n (x)) =

0, since x is a cycle in Kn by assumption. QED

Now we can also mimick the notion of homotopy equivalences.

Chain homotopy equivalences

A morphism of chain complexes f : K∗ → L∗ is called a homotopy equiv-
alence if there exists a morphism of chain complexes g : L∗ → K∗ such that
g ◦ f ' idK∗ and f ◦ g ' idL∗ .
If such a homotopy equivalence exists, we write K∗ ' L∗ and say that K∗
and L∗ are homotopy equivalent.

In particular, by adopting language from algebraic topology, if the identity map
on a chain complex K∗ is homotopy equivalent to the zero map, then we say that
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K∗ is contractible. For example, if X is a contractible space, then its singular
chain complex S∗(X) is a contractible chain complex. Note that a chain
complex K∗ with at least one nonzero homology group cannot be contractible.

As a consequence of what we proved we get:

Chain homotopy equivalences

• If K∗ ' L∗, then Hn(K∗) ∼= Hn(L∗).
• Given two chain complexes K∗ and L∗ we denote the set of morphisms
of chain complexes by Mor(K∗,L∗). Let [K∗,L∗] := Mor(K∗,L∗)/ ' denote
the set of equivalence classes under the relation given by chain homotopies.
Then we can define a new category whose objects are chain complexes and
whose sets of morphisms from K∗ → L∗ are homotopy classes of chain maps,
i.e., the sets [K∗,L∗]. Let us call this category K.
Since the homotopy relation respects composition, we obtain that homology
defines a functor

K→ Ab, K∗ 7→ Hn(K∗)

where Ab denotes the category of abelian groups.

Let us look at some examples:

• Let K∗ be the chain complex

· · · → 0→ Z 0−→ Z→ 0→ · · · .

Since all maps are trivial, we have Hn(K∗) = Kn for all n. Hence K∗ has
exactly two nonzero homology groups, both being Z. In particular, it is
not contractible.
• Let K∗ be the chain complex

· · · → 0→ Z 1−→ Z→ 0→ · · · .
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This complex is actually an exact sequence. Thus Hn(K∗) = 0 for all n.
Moreover it is contractible. We can write down a homotopy by

0

��

id
// 0

��

Z
1
��

id
//

0
??

Z
1
��

Z

��

id
//

1
??

Z

��

0
id
//

0
??

0.

• Let K∗ be the chain complex

· · · → 0→ Z 2−→ Z→ 0→ · · · .
This complex has one nonzero homology group H1(K∗) = Z/2. It is
therefore not contractible.
• Let K∗ be the chain complex

· · · 2−→ Z/4
2−→ Z/4

2−→ Z/4
2−→ Z/4

2−→ · · · .
The homology of K∗ vanishes, since, at each stage, the image and the
kernel of the differential is 2Z/4. Nevertheless, K∗ is not contractible.
For if there was a homotopy between idK∗ and the zero map, it would like
this

Z/4

2
��

id
// Z/4

2
��

Z/4

2
��

id
//

hn

==

Z/4

2
��

Z/4
id
//

hn−1

==

Z/4

and satisfy id = 2hn + hn−12. But 2hn + hn−12 can only produce even
numbers modulo 4. Hence it cannot be the identity map on Z/4.

After all this abstract stuff we should better demonstrate that the notion of
chain homotopies is useful for our purposes. We are going to do this by showing
that homotopies between maps of spaces induces a chain homotopy. By what we
have just seen, this will prove the Homotopy Axiom for singular homology.
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