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Lecture 12

12. LOCALITY AND THE MAYER-VIETORIS SEQUENCE

We are going to discuss the Excision Axiom for singular homology and some
consequences. Let us first recall what it says:

Excision Axiom of singular homology

Let (X,A) be a pair of spaces and let Z C A be a subspace the closure
of which is contained in the interior of A, in formulae Z C A°. Then the
inclusion map k: (X — Z, A — Z) — (X,A) induces an isomorphism

H,(k): H, (X —UA—-U) = H,(X,A) for all n.

We are going to deduce the excision property of homology from the following
locality principle.

Let X be a topological space and let A = {A;};c; be a cover of X, ie., a
collection of subsets A; C X such that X is the union of the interiors of the
AjS.

A-small chains

e An n-simplex o: A" — X is called A-small if the image of ¢ is contained
in one of the Ajs.
e An n-chain ¢ = ), n;0; if X is called A-small if, for every ¢, there is a
Aj such that O'i(An) C Aj.
e We are going to denote the subgroup of A-small n-chains by
SAX) :=={ce€ S, (X): ois A—small}.
e For a subspace A C X, we write
S (X)
SA(A)

S';:‘(X,A) =



If, for each j, ¢;: A; < X denotes the inclusion map, then we can describe
SA(X) also as

SﬁXﬁﬂm(G}%Mﬂ@ﬁ@HMXo.

jedJ

The point of A-small chains is that we can use their chain complex to compute
singular homology:

Locality Principle/Small Chain Theorem

For any cover A of X, the inclusion of chain complexes
SAX,A) C S.(X,A)

induces an isomorphism in homology.

The proof of this theorem takes quite an effort and we will postpone it for a
moment. Instead we will now explain how the excision property follows from the
theorem.

e Proof of the Excision Axiom using small chains:

Since Z C A°, we have (X — Z)°U A° = X. Thus, if we set B := X — Z,
A = {A, B} is a cover of X.

Moreover, we can rewrite

(X —Z,A—Z)=(B,AN B).

Hence our goal is to show that
S«(B,ANB) = S.(X,A)
induces an isomorphism in homology.

The inclusion of chain complexes SA(X) C S.(X) induces a morphism of short
exact sequences of chain complexes

0—— S, (A) — SAX) — SAX)/S.(A) ——0

| l

0—— S, (A) —— S (X) —— S.(X)/S.(A) —— 0.
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The middle vertical map induces an isomorphism in homology by the Small
Chain Theorem. The induced long exact sequences in homology and the Five-
Lemma imply that the right-hand vertical map induces an isomorphism
in homology as well. Thus we are reduced to compare S,(B,AN B) and

SAX)/S.(A).
Now we observe
SAX) = S,(A)+ S,.(B) C S.(X)

and hence

5.(B) S(B) = S.(A)+S.(B) _ SH(X)

S.(ANB) _ S.(A)nS.(B) S.(A) S.(A)

where the middle isomorphism follows from the general comparison of quo-
tients of sums and intersections of abelian groups.

Thus the chain map
S.(B, AN B) — SA(X)/S.(A)

induces an isomorphism in homology and the excison axiom holds. QED

e The Mayer-Vietoris sequence

The above proof inspires us to look at the following situation which will lead
to an important computational tool.

Assume that A = {A,B} is a cover of X. Consider the diagram

ANnB-25 4

jBl liA
B—X.
iB

For every n, these maps induce homomorphisms in homology

an: Hy(AN B) = H,(A) ® H,(B), o, = {—HHH,EZ;;)}

x = (Hn(ja)(@), —Hn(jB)(2))
and
Bn: Hy(A)® Hy(B) — H,(X), B = [Hn(z’A) Hn(iB)]
(a,b) — H,(ia)(a) + H,(ig)(b).
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Theorem: Mayer-Vietoris sequence

For any cover A = {A,B} of X, there are natural homomorphisms
oMV Hy(X) — H,_1(AN B) for all n

which fit into an exact sequence

— M Hon(X)

Bn

Hn(A N B) a—n> Hn(A) D Hn(B) — Hn(X)

oMV

Proof: From the proof of the Excision Axiom we remember that there is a
short exact sequence of chain complexes

)

0— S, (AN B) S.(A) @ S,(B) ' » SAX) = 0.

Note that the exactness at the right-hand term was part of the proof of the
Excision Axiom and the exacntess at the middle term can be easily checked by
looking long enough at the commutative diagram



It induces a long exact sequence in homology

6;3—!—1 A
Hn-‘rl (X)
o

B'A
— 5 HAMX)

n

H.(AN B) —— H,(A) ® H,(B)

oA

n

By definition of small chains, the homomorphism f,, factors through small chains,
in other words, it is induced by the composition

[Sn(ia) Sulis)]

Sa(A) & S,(B) s SAX) = S, (X).

Thus we can apply the inverse of the isomorphism of the Small Chain The-
orem and define 9" to be

~ A
MV H(X) S HAKX) 25 H,_ (AN B).
Then the following sequence

Bn oV

Hy(A) & Hy(B) 2 H(X) 2" H,_,(AN B)

B T /ﬁ‘

H;{(X)

n

1R 3m

is exact at H,(X), since the triangles commute.

This yields the sequence of homomorphisms and the desired long exact se-
quence. QED

The MVS is an extremely useful tool

The Mayer-Vietoris sequence (MVS) is an important computational tool.
Its power relies on the simple idea: If you want to understand a big space,
split it up into smaller spaces you understand and then put the information
back together.

The MVS tells us how the homology of X is built out of homologies of the
cover by A and B.

Let us apply this new insight to some concrete examples:



e Let us calculate the homology of X = S! yet another time. Let z = (0,1)
and y = (0, — 1) on S*. We set A = S' — {y} and B = S' — {y}. Then A and
B are two open subsets which cover S'. We observe that both A and B are
contractible.

The intersection A N B contains the points p = (—1,0) and ¢ = (1,0). In fact,
the inclusion

{pq} —ANB

is a deformation retract.

Since A = {A,B} is a cover of S!, we can write down the corresponding MVS.
For n > 2, all the homology groups hitting and being hit by H,,(S') are zero, since
H,(A)® H,(B)=H,{z})® H,({y}) =0and H,_1(ANB) = H,_1({p,q}) = 0.
Thus

H,(S") =0 for all n > 2.

Since S! is path-connected, we know Hy(S') = Z. It remains to check n = 1.
The MVS for n = 1 looks like
O—>H1 Sl —>H0AﬂB —>H0 @HO )

0— H\(SYY ——Z®ZL ————ZDL
1 1
R

where we obtain the lower right-hand map by observing that all summands are
of the form Hy(pt) and hence each generator in Hy(A N B) is sent to (1, — 1) by
[Ho(ja), —Ho(jB)]. Thus H;(S') is the kernel of this map:

Hi(SY) = Ker ([_11 _11]) — {(z,—2) €ZB L} 2 L.

eForn>2 let A=S5"—{S}and B = S"— {N} where N and S are the
north- and south-pole of S, respectively,. We observe that both A and B are
contractible. Moreover, the inclusion of j: S" ! < AN B as the equator is a
strong deformation retract. In particular, 5 is a homotopy equivalence.

Together with the inverse of the isomorphism H, 1(j), we get

(=23

Hy1(j) 00"V s Hy(S™) = Hy1(S™)
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is an isomorphism for all ¢ > 2. Since we know H,(S') for all g, this yields H,(S™)
by induction.

e Let K be the Klein bottle which can be constructed from a square by gluing
the edges as indicated in the following picture:

‘

* e Thyekn. 10 &yes. and gefa ol
! 1A "“‘uaf«ebﬁue{fsdﬂ

- oo o (71«/:9«%
%»JM o0 bt cicle 1 184 culye

The outcome of this procedure is the twisted surface whose 3-dimensional
shadow we see in the next picture which is taken from wikipedia.org:

(Note that we should really think of K as an object in R* where it does not
self-intersect.)

We observe that K can be constructed by taking two Mobius bands A and B
and gluing them together by a homeomorphism between their boundary circles.
Hence K = AU B and AN B ~ S'. In the exercises we are going to caculate
the homology of the Mdbius strip. It is given by Ho(M) = Hy(M) = Z and
Hy(M) =0.

We would like to use this information to calculate the homology of K.

Since K is path-connected as a quotient of a path-connected space, we know
Hy(K) =7Z.



Now we apply the MVS: We observe that H,,(A), H,(B) and H,,(ANB) vanish
for n > 2. Hence H,(K) =0 for all n > 3.

The remaining MVS looks like this:
0 — Hy(K) 25 H{(AN B) 25 Hy(A) @ Hy(B) — H,(K) — 0.
The 0 on the right-hand side is justified by the fact that
Hy(ANB)2Z 25 Z & Z = Hy(A) © Hy(B)
is injective.
The map ¢, is given by
25707, 1 (2,—2),
since
H{(ANB) = H(S") — H, (M) = H,(A)
wraps the circle around the boundary of M twice, and
H,(ANB) = H\(S") = H(M) = H(B)
does that too, but with reversed orientation. (We will understand this fact
better after we have done the exercises.) Hence on the second factor we use the
map 2z — z~ 2 to produce a Mobius band.
In particular, ¢; is injective and hence

H,(K) = 0.

Moreover, H;(K) is the cokernel of ¢;. If we choose the basis
{b1 :=(1,0),b0 :=(1,— 1)} for Z& Z,

then we see that ¢; maps 1 € Z to 2by in Zb; & Zbs. Hence the cokernel of ¢, is
isomorphic to Zby; ® Zby/2bs. Thus

Hi(K)~XZ®Z/2.
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