MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 12

12. Locality and the Mayer-Vietoris sequence

We are going to discuss the Excision Axiom for singular homology and some consequences. Let us first recall what it says:

Excision Axiom of singular homology

Let (X,A) be a pair of spaces and let $Z \subset A$ be a subspace the closure of which is contained in the interior of A, in formulae $\overline{Z} \subseteq A^{\circ}$. Then the inclusion map $k: (X - Z, A - Z) \hookrightarrow (X,A)$ induces an **isomorphism**

 $H_n(k): H_n(X - U, A - U) \to H_n(X, A)$ for all n.

We are going to deduce the excision property of homology from the following **locality principle**.

Let X be a topological space and let $\mathcal{A} = \{A_j\}_{j \in J}$ be a **cover** of X, i.e., a collection of subsets $A_j \subseteq X$ such that X is the **union of the interiors** of the A_j s.

\mathcal{A} -small chains

- An *n*-simplex $\sigma: \Delta^n \to X$ is called *A*-small if the image of σ is contained in one of the A_j s.
- An *n*-chain $c = \sum_i n_i \sigma_i$ if X is called *A*-small if, for every *i*, there is a A_j such that $\sigma_i(\Delta^n) \subset A_j$.
- We are going to denote the subgroup of \mathcal{A} -small *n*-chains by

$$S_n^{\mathcal{A}}(X) := \{ c \in S_n(X) : \sigma \text{ is } \mathcal{A} - \text{small} \}.$$

• For a subspace $A \subset X$, we write

$$S_n^{\mathcal{A}}(X,A) := \frac{S_n^{\mathcal{A}}(X)}{S_n^{\mathcal{A}}(A)}$$

If, for each $j, \iota_j \colon A_j \hookrightarrow X$ denotes the inclusion map, then we can describe $S_n^{\mathcal{A}}(X)$ also as

$$S_n^{\mathcal{A}}(X) = \operatorname{Im}\left(\bigoplus_{j \in J} S_n(A_j) \xrightarrow{\oplus_j S_n(\iota_j)} S_n(X)\right).$$

The point of \mathcal{A} -small chains is that we can use their chain complex to compute singular homology:

Locality Principle/Small Chain Theorem

For any cover \mathcal{A} of X, the inclusion of chain complexes

 $S^{\mathcal{A}}_*(X,A) \subset S_*(X,A)$

induces an **isomorphism in homology**.

The **proof** of this theorem takes quite an effort and we will postpone it for a moment. Instead we will now explain how the excision property follows from the theorem.

• Proof of the Excision Axiom using small chains:

Since $\overline{Z} \subseteq A^{\circ}$, we have $(X - Z)^{\circ} \cup A^{\circ} = X$. Thus, if we set B := X - Z, $\mathcal{A} = \{A, B\}$ is a cover of X.

Moreover, we can rewrite

$$(X - Z, A - Z) = (B, A \cap B).$$

Hence our **goal** is to show that

$$S_*(B,A\cap B) \to S_*(X,A)$$

induces an isomorphism in homology.

The inclusion of chain complexes $S^{\mathcal{A}}_*(X) \subset S_*(X)$ induces a morphism of short exact sequences of chain complexes

$$\begin{array}{cccc} 0 \longrightarrow S_*(A) \longrightarrow S_*^{\mathcal{A}}(X) \longrightarrow S_*^{\mathcal{A}}(X)/S_*(A) \longrightarrow 0 \\ & & & & \downarrow & & \downarrow \\ 0 \longrightarrow S_*(A) \longrightarrow S_*(X) \longrightarrow S_*(X)/S_*(A) \longrightarrow 0. \end{array}$$

 $\mathbf{2}$

The **middle vertical map** induces an isomorphism in homology by the **Small Chain Theorem**. The induced long exact sequences in homology and the **Five-Lemma** imply that the **right-hand vertical map** induces an isomorphism in homology as well. Thus we are **reduced to compare** $S_*(B, A \cap B)$ and $S_*^{\mathcal{A}}(X)/S_*(A)$.

Now we observe

$$S_*^{\mathcal{A}}(X) = S_*(A) + S_*(B) \subset S_*(X)$$

and hence

$$\frac{S_*(B)}{S_*(A \cap B)} = \frac{S_*(B)}{S_*(A) \cap S_*(B)} \xrightarrow{\cong} \frac{S_*(A) + S_*(B)}{S_*(A)} = \frac{S_*^{\mathcal{A}}(X)}{S_*(A)}$$

where the middle isomorphism follows from the **general comparison** of quotients of sums and intersections of abelian groups.

Thus the chain map

$$S_*(B,A\cap B) \to S^{\mathcal{A}}_*(X)/S_*(A)$$

induces an isomorphism in homology and the excision axiom holds. QED

• The Mayer-Vietoris sequence

The above proof inspires us to look at the following situation which will lead to an important computational tool.

Assume that $\mathcal{A} = \{A, B\}$ is a **cover** of X. Consider the diagram

$$\begin{array}{c} A \cap B \xrightarrow{j_A} A \\ j_B \downarrow & \qquad \downarrow i_A \\ B \xrightarrow{i_B} X. \end{array}$$

For every n, these maps induce homomorphisms in homology

$$\alpha_n \colon H_n(A \cap B) \to H_n(A) \oplus H_n(B), \alpha_n = \begin{bmatrix} H_n(j_A) \\ -H_n(j_B) \end{bmatrix}$$
$$x \mapsto (H_n(j_A)(x), -H_n(j_B)(x))$$

and

$$\beta_n \colon H_n(A) \oplus H_n(B) \to H_n(X), \beta_n = \begin{bmatrix} H_n(i_A) & H_n(i_B) \end{bmatrix}$$
$$(a,b) \mapsto H_n(i_A)(a) + H_n(i_B)(b).$$

Theorem: Mayer-Vietoris sequence

For any cover $\mathcal{A} = \{A, B\}$ of X, there are natural homomorphisms $\partial_n^{MV} \colon H_n(X) \to H_{n-1}(A \cap B)$ for all n

which fit into an **exact sequence**

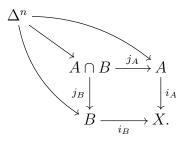
$$H_n(A \cap B) \xrightarrow{\alpha_n} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n} H_n(X)$$

$$H_{n-1}(A \cap B) \xrightarrow{\alpha_{n-1}} \cdots$$

Proof: From the proof of the Excision Axiom we remember that there is a short exact sequence of chain complexes

$$0 \to S_*(A \cap B) \xrightarrow{\left[\begin{array}{c} S_*(j_A) \\ -S_*(j_B) \end{array}\right]} S_*(A) \oplus S_*(B) \xrightarrow{\left[\begin{array}{c} S_*(i_A) & S_*(i_B) \end{array}\right]} S_*^{\mathcal{A}}(X) \to 0.$$

Note that the exactness at the right-hand term was part of the proof of the Excision Axiom and the exacntess at the middle term can be easily checked by looking long enough at the **commutative diagram**



4

It induces a long exact sequence in homology

$$\begin{array}{c} & & & \stackrel{\beta_{n+1}^{\mathcal{A}}}{\longrightarrow} H_{n+1}^{\mathcal{A}}(X) \\ & & \stackrel{\partial_{n+1}^{\mathcal{A}}}{\longrightarrow} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n^{\mathcal{A}}} H_n^{\mathcal{A}}(X) \\ & & \stackrel{\partial_n^{\mathcal{A}}}{\longrightarrow} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n^{\mathcal{A}}} H_n^{\mathcal{A}}(X) \\ & & \stackrel{\partial_n^{\mathcal{A}}}{\longrightarrow} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n^{\mathcal{A}}} H_n^{\mathcal{A}}(X) \\ & & \stackrel{\partial_n^{\mathcal{A}}}{\longrightarrow} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n^{\mathcal{A}}} H_n^{\mathcal{A}}(X) \\ & & \stackrel{\partial_n^{\mathcal{A}}}{\longrightarrow} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n^{\mathcal{A}}} H_n^{\mathcal{A}}(X) \\ & & \stackrel{\partial_n^{\mathcal{A}}}{\longrightarrow} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n^{\mathcal{A}}} H_n^{\mathcal{A}}(X) \\ & & \stackrel{\partial_n^{\mathcal{A}}}{\longrightarrow} H_n(A) \oplus H_n(B) \xrightarrow{\beta_n^{\mathcal{A}}} H_n^{\mathcal{A}}(X) \\ & & \stackrel{\partial_n^{\mathcal{A}}}{\longrightarrow} H_n^{\mathcal{A}}(X) \\ &$$

By definition of small chains, the homomorphism β_n factors through small chains, in other words, it is induced by the composition

$$S_n(A) \oplus S_n(B) \xrightarrow{\begin{bmatrix} S_n(i_A) & S_n(i_B) \end{bmatrix}} S_n^{\mathcal{A}}(X) \hookrightarrow S_n(X).$$

Thus we can apply the inverse of the isomorphism of the **Small Chain The**orem and define ∂_n^{MV} to be

$$\partial_n^{MV} \colon H_n(X) \xrightarrow{\cong} H_n^{\mathcal{A}}(X) \xrightarrow{\partial_n^{\mathcal{A}}} H_{n-1}(A \cap B).$$

Then the following sequence

$$H_n(A) \oplus H_n(B) \xrightarrow{\beta_n} H_n(X) \xrightarrow{\partial_n^{MV}} H_{n-1}(A \cap B)$$

$$\xrightarrow{\beta_n^{\mathcal{A}}} \cong \bigwedge_{H_n^{\mathcal{A}}(X)} \xrightarrow{\partial_n^{\mathcal{A}}} \xrightarrow{\partial_n^{\mathcal{A}}}$$

is exact at $H_n(X)$, since the triangles commute.

This yields the sequence of homomorphisms and the desired long exact sequence. **QED**

The MVS is an extremely useful tool

The Mayer-Vietoris sequence (MVS) is an important computational tool. Its power relies on the simple idea: If you want to understand a big space, split it up into smaller spaces you understand and then put the information back together.

The MVS tells us how the homology of X is built out of homologies of the cover by A and B.

Let us apply this new insight to some **concrete examples**:

 $\mathbf{6}$

• Let us calculate the homology of $X = S^1$ yet another time. Let x = (0,1) and y = (0, -1) on S^1 . We set $A = S^1 - \{y\}$ and $B = S^1 - \{y\}$. Then A and B are two open subsets which cover S^1 . We observe that both A and B are contractible.

The intersection $A \cap B$ contains the points p = (-1,0) and q = (1,0). In fact, the inclusion

$$\{p,q\} \hookrightarrow A \cap B$$

is a deformation retract.

Since $\mathcal{A} = \{A, B\}$ is a cover of S^1 , we can write down the corresponding MVS. For $n \geq 2$, all the homology groups hitting and being hit by $H_n(S^1)$ are zero, since $H_n(A) \oplus H_n(B) = H_n(\{x\}) \oplus H_n(\{y\}) = 0$ and $H_{n-1}(A \cap B) = H_{n-1}(\{p,q\}) = 0$. Thus

$$H_n(S^1) = 0$$
 for all $n \ge 2$.

Since S^1 is path-connected, we know $H_0(S^1) = \mathbb{Z}$. It remains to check n = 1.

The MVS for n = 1 looks like

where we obtain the lower right-hand map by observing that all summands are of the form $H_0(\text{pt})$ and hence each generator in $H_0(A \cap B)$ is sent to (1, -1) by $[H_0(j_A), -H_0(j_B)]$. Thus $H_1(S^1)$ is the kernel of this map:

$$H_1(S^1) \cong \operatorname{Ker} \left(\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \right) = \{ (x, -x) \in \mathbb{Z} \oplus \mathbb{Z} \} \cong \mathbb{Z}.$$

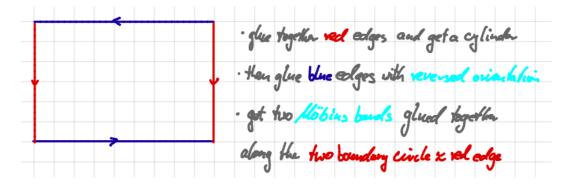
• For $n \ge 2$, let $A = S^n - \{S\}$ and $B = S^n - \{N\}$ where N and S are the **north- and south-pole** of S^n , respectively. We observe that both A and B are **contractible**. Moreover, the inclusion of $j: S^{n-1} \hookrightarrow A \cap B$ as the equator is a strong deformation retract. In particular, j is a homotopy equivalence.

Together with the inverse of the isomorphism $H_{q-1}(j)$, we get

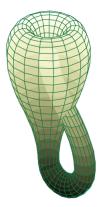
$$H_{q-1}(j)^{-1} \circ \partial_q^{MV} \colon H_q(S^n) \xrightarrow{\cong} H_{q-1}(S^{n-1})$$

is an isomorphism for all $q \ge 2$. Since we know $H_q(S^1)$ for all q, this yields $H_q(S^n)$ by induction.

• Let K be the **Klein bottle** which can be constructed from a square by gluing the edges as indicated in the following picture:



The outcome of this procedure is the **twisted surface** whose 3-dimensional shadow we see in the next picture which is taken from wikipedia.org:



(Note that we should really think of K as an object in \mathbb{R}^4 where it does not self-intersect.)

We observe that K can be constructed by taking **two Möbius bands** A and Band gluing them together by a homeomorphism between their boundary circles. Hence $K = A \cup B$ and $A \cap B \approx S^1$. In the exercises we are going to caculate the homology of the Möbius strip. It is given by $H_0(M) = H_1(M) = \mathbb{Z}$ and $H_2(M) = 0$.

We would like to use this information to calculate the homology of K.

Since K is **path-connected** as a quotient of a path-connected space, we know $H_0(K) = \mathbb{Z}$.

8

Now we apply the **MVS**: We observe that $H_n(A)$, $H_n(B)$ and $H_n(A \cap B)$ vanish for $n \ge 2$. Hence $H_n(K) = 0$ for all $n \ge 3$.

The remaining MVS looks like this:

$$0 \to H_2(K) \xrightarrow{\partial^{MV}} H_1(A \cap B) \xrightarrow{\varphi_1} H_1(A) \oplus H_1(B) \to H_1(K) \to 0$$

The 0 on the right-hand side is justified by the fact that

$$H_0(A \cap B) \cong \mathbb{Z} \xrightarrow{\varphi_0} \mathbb{Z} \oplus \mathbb{Z} \cong H_0(A) \oplus H_0(B)$$

is **injective**.

The map φ_1 is given by

$$\mathbb{Z} \xrightarrow{\varphi_1} \mathbb{Z} \oplus \mathbb{Z}, 1 \mapsto (2, -2),$$

since

$$H_1(A \cap B) = H_1(S^1) \to H_1(M) = H_1(A)$$

wraps the circle around the boundary of M twice, and

$$H_1(A \cap B) = H_1(S^1) \to H_1(M) = H_1(B)$$

does that too, but with **reversed orientation**. (We will understand this fact better after we have done the **exercises**.) Hence on the second factor we use the map $z \mapsto z^{-2}$ to produce a Möbius band.

In particular, φ_1 is **injective** and hence

$$\mathbf{H_2}(\mathbf{K}) = \mathbf{0}.$$

Moreover, $H_1(K)$ is the **cokernel** of φ_1 . If we choose the **basis**

$$\{b_1 := (1,0), b_2 := (1,-1)\}$$
 for $\mathbb{Z} \oplus \mathbb{Z}$,

then we see that φ_1 maps $1 \in \mathbb{Z}$ to $2b_2$ in $\mathbb{Z}b_1 \oplus \mathbb{Z}b_2$. Hence the cokernel of φ_1 is isomorphic to $\mathbb{Z}b_1 \oplus \mathbb{Z}b_2/2b_2$. Thus

 $H_1(K) \cong \mathbb{Z} \oplus \mathbb{Z}/2.$