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Lecture 12

12. Locality and the Mayer-Vietoris sequence

We are going to discuss the Excision Axiom for singular homology and some
consequences. Let us first recall what it says:

Excision Axiom of singular homology

Let (X,A) be a pair of spaces and let Z ⊂ A be a subspace the closure
of which is contained in the interior of A, in formulae Z̄ ⊆ A◦. Then the
inclusion map k : (X − Z,A− Z) ↪→ (X,A) induces an isomorphism

Hn(k) : Hn(X − U,A− U)→ Hn(X,A) for all n.

We are going to deduce the excision property of homology from the following
locality principle.

Let X be a topological space and let A = {Aj}j∈J be a cover of X, i.e., a
collection of subsets Aj ⊆ X such that X is the union of the interiors of the
Ajs.

A-small chains

• An n-simplex σ : ∆n → X is called A-small if the image of σ is contained
in one of the Ajs.
• An n-chain c =

∑
i niσi if X is called A-small if, for every i, there is a

Aj such that σi(∆
n) ⊂ Aj.

• We are going to denote the subgroup of A-small n-chains by

SAn (X) := {c ∈ Sn(X) : σ is A− small}.
• For a subspace A ⊂ X, we write

SAn (X,A) :=
SAn (X)

SAn (A)
.
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If, for each j, ιj : Aj ↪→ X denotes the inclusion map, then we can describe
SAn (X) also as

SAn (X) = Im

(⊕
j∈J

Sn(Aj)
⊕jSn(ιj)−−−−−→ Sn(X)

)
.

The point of A-small chains is that we can use their chain complex to compute
singular homology:

Locality Principle/Small Chain Theorem

For any cover A of X, the inclusion of chain complexes

SA∗ (X,A) ⊂ S∗(X,A)

induces an isomorphism in homology.

The proof of this theorem takes quite an effort and we will postpone it for a
moment. Instead we will now explain how the excision property follows from the
theorem.

• Proof of the Excision Axiom using small chains:

Since Z̄ ⊆ A◦, we have (X − Z)◦ ∪ A◦ = X. Thus, if we set B := X − Z,
A = {A,B} is a cover of X.

Moreover, we can rewrite

(X − Z,A− Z) = (B,A ∩B).

Hence our goal is to show that

S∗(B,A ∩B)→ S∗(X,A)

induces an isomorphism in homology.

The inclusion of chain complexes SA∗ (X) ⊂ S∗(X) induces a morphism of short
exact sequences of chain complexes

0 // S∗(A) // SA∗ (X)

��

// SA∗ (X)/S∗(A)

��

// 0

0 // S∗(A) // S∗(X) // S∗(X)/S∗(A) // 0.
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The middle vertical map induces an isomorphism in homology by the Small
Chain Theorem. The induced long exact sequences in homology and the Five-
Lemma imply that the right-hand vertical map induces an isomorphism
in homology as well. Thus we are reduced to compare S∗(B,A ∩ B) and
SA∗ (X)/S∗(A).

Now we observe

SA∗ (X) = S∗(A) + S∗(B) ⊂ S∗(X)

and hence

S∗(B)

S∗(A ∩B)
=

S∗(B)

S∗(A) ∩ S∗(B)

∼=−→ S∗(A) + S∗(B)

S∗(A)
=
SA∗ (X)

S∗(A)

where the middle isomorphism follows from the general comparison of quo-
tients of sums and intersections of abelian groups.

Thus the chain map

S∗(B,A ∩B)→ SA∗ (X)/S∗(A)

induces an isomorphism in homology and the excison axiom holds. QED

• The Mayer-Vietoris sequence

The above proof inspires us to look at the following situation which will lead
to an important computational tool.

Assume that A = {A,B} is a cover of X. Consider the diagram

A ∩B
jB
��

jA
// A

iA
��

B
iB

// X.

For every n, these maps induce homomorphisms in homology

αn : Hn(A ∩B)→ Hn(A)⊕Hn(B), αn =

[
Hn(jA)
−Hn(jB)

]
x 7→ (Hn(jA)(x),−Hn(jB)(x))

and

βn : Hn(A)⊕Hn(B)→ Hn(X), βn =
[
Hn(iA) Hn(iB)

]
(a,b) 7→ Hn(iA)(a) +Hn(iB)(b).
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Theorem: Mayer-Vietoris sequence

For any cover A = {A,B} of X, there are natural homomorphisms

∂MV
n : Hn(X)→ Hn−1(A ∩B) for all n

which fit into an exact sequence

· · ·
βn+1

// Hn+1(X)
∂MV
n+1

rr

Hn(A ∩B) αn

// Hn(A)⊕Hn(B)
βn
// Hn(X)

∂MV
nrr

Hn−1(A ∩B) αn−1

// · · ·

Proof: From the proof of the Excision Axiom we remember that there is a
short exact sequence of chain complexes

0→ S∗(A ∩B)

 S∗(jA)
−S∗(jB)


−−−−−−−−→ S∗(A)⊕ S∗(B)

[
S∗(iA) S∗(iB)

]
−−−−−−−−−−−−→ SA∗ (X)→ 0.

Note that the exactness at the right-hand term was part of the proof of the
Excision Axiom and the exacntess at the middle term can be easily checked by
looking long enough at the commutative diagram

∆n

$$

%%

""

A ∩B
jB
��

jA
// A

iA
��

B
iB

// X.
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It induces a long exact sequence in homology

· · ·
βAn+1

// HAn+1(X)
∂An+1

ss

Hn(A ∩B) αn

// Hn(A)⊕Hn(B)
βAn
// HAn (X)

∂Anrr

Hn−1(A ∩B) αn−1

// · · ·

By definition of small chains, the homomorphism βn factors through small chains,
in other words, it is induced by the composition

Sn(A)⊕ Sn(B)

[
Sn(iA) Sn(iB)

]
−−−−−−−−−−−−→ SAn (X) ↪→ Sn(X).

Thus we can apply the inverse of the isomorphism of the Small Chain The-
orem and define ∂MV

n to be

∂MV
n : Hn(X)

∼=−→ HAn (X)
∂An−→ Hn−1(A ∩B).

Then the following sequence

Hn(A)⊕Hn(B)

βAn ''

βn
// Hn(X)

∂MV
n
// Hn−1(A ∩B)

HAn (X)

∼=

OO

∂An

77

is exact at Hn(X), since the triangles commute.

This yields the sequence of homomorphisms and the desired long exact se-
quence. QED

The MVS is an extremely useful tool

The Mayer-Vietoris sequence (MVS) is an important computational tool.
Its power relies on the simple idea: If you want to understand a big space,
split it up into smaller spaces you understand and then put the information
back together.
The MVS tells us how the homology of X is built out of homologies of the
cover by A and B.

Let us apply this new insight to some concrete examples:
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• Let us calculate the homology of X = S1 yet another time. Let x = (0,1)
and y = (0, − 1) on S1. We set A = S1 − {y} and B = S1 − {y}. Then A and
B are two open subsets which cover S1. We observe that both A and B are
contractible.

The intersection A ∩ B contains the points p = (−1,0) and q = (1,0). In fact,
the inclusion

{p,q} ↪→ A ∩B

is a deformation retract.

Since A = {A,B} is a cover of S1, we can write down the corresponding MVS.
For n ≥ 2, all the homology groups hitting and being hit by Hn(S1) are zero, since
Hn(A)⊕Hn(B) = Hn({x})⊕Hn({y}) = 0 and Hn−1(A∩B) = Hn−1({p,q}) = 0.
Thus

Hn(S1) = 0 for all n ≥ 2.

Since S1 is path-connected, we know H0(S
1) = Z. It remains to check n = 1.

The MVS for n = 1 looks like

0 // H1(S
1) // H0(A ∩B) // H0(A)⊕H0(B)

0 // H1(S
1) // Z⊕ Z  1 1

−1 −1


// Z⊕ Z

where we obtain the lower right-hand map by observing that all summands are
of the form H0(pt) and hence each generator in H0(A ∩B) is sent to (1,− 1) by
[H0(jA),−H0(jB)]. Thus H1(S

1) is the kernel of this map:

H1(S
1) ∼= Ker

([
1 1
−1 −1

])
= {(x,−x) ∈ Z⊕ Z} ∼= Z.

• For n ≥ 2, let A = Sn − {S} and B = Sn − {N} where N and S are the
north- and south-pole of Sn, respectively,. We observe that both A and B are
contractible. Moreover, the inclusion of j : Sn−1 ↪→ A ∩ B as the equator is a
strong deformation retract. In particular, j is a homotopy equivalence.

Together with the inverse of the isomorphism Hq−1(j), we get

Hq−1(j)
−1 ◦ ∂MV

q : Hq(S
n)
∼=−→ Hq−1(S

n−1)
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is an isomorphism for all q ≥ 2. Since we know Hq(S
1) for all q, this yields Hq(S

n)
by induction.

• Let K be the Klein bottle which can be constructed from a square by gluing
the edges as indicated in the following picture:

The outcome of this procedure is the twisted surface whose 3-dimensional
shadow we see in the next picture which is taken from wikipedia.org:

(Note that we should really think of K as an object in R4 where it does not
self-intersect.)

We observe that K can be constructed by taking two Möbius bands A and B
and gluing them together by a homeomorphism between their boundary circles.
Hence K = A ∪ B and A ∩ B ≈ S1. In the exercises we are going to caculate
the homology of the Möbius strip. It is given by H0(M) = H1(M) = Z and
H2(M) = 0.

We would like to use this information to calculate the homology of K.

Since K is path-connected as a quotient of a path-connected space, we know
H0(K) = Z.
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Now we apply the MVS: We observe that Hn(A), Hn(B) and Hn(A∩B) vanish
for n ≥ 2. Hence Hn(K) = 0 for all n ≥ 3.

The remaining MVS looks like this:

0→ H2(K)
∂MV

−−−→ H1(A ∩B)
ϕ1−→ H1(A)⊕H1(B)→ H1(K)→ 0.

The 0 on the right-hand side is justified by the fact that

H0(A ∩B) ∼= Z ϕ0−→ Z⊕ Z ∼= H0(A)⊕H0(B)

is injective.

The map ϕ1 is given by

Z ϕ1−→ Z⊕ Z, 1 7→ (2,− 2),

since

H1(A ∩B) = H1(S
1)→ H1(M) = H1(A)

wraps the circle around the boundary of M twice, and

H1(A ∩B) = H1(S
1)→ H1(M) = H1(B)

does that too, but with reversed orientation. (We will understand this fact
better after we have done the exercises.) Hence on the second factor we use the
map z 7→ z−2 to produce a Möbius band.

In particular, ϕ1 is injective and hence

H2(K) = 0.

Moreover, H1(K) is the cokernel of ϕ1. If we choose the basis

{b1 := (1,0), b2 := (1,− 1)} for Z⊕ Z,
then we see that ϕ1 maps 1 ∈ Z to 2b2 in Zb1 ⊕ Zb2. Hence the cokernel of ϕ1 is
isomorphic to Zb1 ⊕ Zb2/2b2. Thus

H1(K) ∼= Z⊕ Z/2.
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