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Lecture 13

13. Cell complexes

We return to an important type of topological spaces, called CW- or cell com-
plexes, that is particularly convenient for our purposes in many respects. It will
turn out that this type of spaces both appears very frequently and is quite acces-
sible for calculations. In particular, we will learn next week that the homology
of a cell complex is quite easy to compute.

The idea of creating a cell complex is to successively glue cells to what has
already been built. The general procedure for doing this is the following:

Gluing a space along a map

Suppose we have a space X and a pair (B,A) of spaces. We define a space
X ∪f B, often also denoted X ∪A B if the map f is either understood or
just the inclusion, which fits into the diagram

A� _

��

f
// X

��

B ϕ
// X ∪f B

by

X ∪f B := (X tB)/(a ∼ f(a) for all a ∈ A).

We say that X ∪f B arises from attaching B to X along f , or along A,
and f is called an attaching map.

By its construction, there are two types of equivalence classes in X ∪f B:

• classes which consist of single points of B − A,
• classes which consist of sets {x} t f−1(X) for any point x ∈ X.

Note that the lower horizontal map ϕ : B → B ∪f X arises as part of the
construction. It is given by

ϕ : B → B ∪f X, b 7→

{
b if b ∈ B − A
[b] if b ∈ A.
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In particular, this shows that ϕ|B−A is a homeomorphism.

The topology of X ∪f B is the quotient topology and is characterized by the
universal property: whenever there is a diagram of solid arrows of the form

A� _

��

f
// X

��

��

B

,,

// X ∪f B

##

Y

then there is a unique dotted arrow which makes all triangles commute. We
can reformulate this fact by saying that X ∪f B is the pushout of the solid
diagram.

For example:

• if X = ∗ consists of just a point, then

X ∪f B = ∗ ∪f B = B/A;

• if A = ∅, then X ∪f B = X tB is just a disjoint union.

A more important example is the following:

Attaching a cell

We consider the pair (Dn, Sn−1) of an n-disk and its boundary. We are
going to think of Dn as an n-cell.
Suppose we are given a map f : Sn−1 → X. Then we can attach an n-cell
to X via f as

Sn−1� _

��

f
// X

��

Dn // X ∪f Dn.

We could speed up this process by attaching several cells at once:∐
α∈J S

n−1
α� _

��

f
// X

��∐
α∈J D

n
α

// X ∪f
∐

α∈J D
n
α.
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Let us look at some examples:

• Let us start with n = 0 and write (D0,S−1) for (∗,∅)). Attaching 0-cells
to a space X just means adding a set of discrete points to X:

X ∪f
∐
α∈J

D0
α = X t J

where J is a set with the discrete topology.
• Now let us attach two 1-cells to a point X = ∗:

S0 t S0
� _

��

f
// ∗

��

D1 tD1 // ∗ ∪f (D1 tD1).

Since there is only one choice for f , we get a figure eight: we start with
two 1-disks D1 and then we identify all four boundary points with the
0-cell. We denote this space by S1 ∨ S1.

• We continue with this space and attach one 2-cell: We can think of S1∨S1

as an empty square where we glue together the horizontal edges and the
vertical edges. Then we glue in a 2-cell into the square by attaching its
boundary to the edges a, b, a−1, and b−1, i.e., by walking clockwise:

S1
� _

��

f=aba−1b−1

// S1 ∨ S1

��

D2 // (S1 ∨ S1) ∪f D2 = T 2.

The result of this procedure is a two-dimensional torus.
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This example motivates the following key concept:

Cell complex

A cell complex, or CW-complex, is a space X equipped with a sequence
of subspaces

∅ = Sk−1X ⊆ Sk0X ⊆ Sk1X ⊆ Sk2X ⊆ · · ·X
such that

• X is the union of the SknXs,
• for all n, SknX arises from Skn−1 by attaching n-cells, i.e., there

is a pushout diagram∐
α∈Jn S

n−1
α� _

��

fn
// Skn−1X

��∐
α∈Jn D

n
α ϕn

// SknX.

The space SknX is called the n-skeleton of X.

In our example of the torus T 2 the skeleta are

Sk0T
2 = ∗, Sk1T

2 = S1 ∨ S1, Sk2T
2 = T 2.

Before we study more examples, we fix more terminology and list some facts
which should help clarify the picture:

• The topology of a cell complex is determined by its skeleta, i.e., a subset
U ⊂ X is open (closed) if and only if U ∩SknX is open (closed) for all n.

• In fact, the topology on X is determined by its cells, i.e., U is open
(closed) in X if and only its intersection with each cell is open (closed),
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or equivalently, if ϕ−1α (U) is open (closed) in each Dn
α. This topology is

called the weak topology and explains the W in CW-complex.

• That implies that a map g : X → Y is continuous if and only if its restric-
tion to each skeleton is continuous, or equivalently, if and only if

g ◦ ϕα : Dn
α → Y is continuous for all Dn

α.

• For any n-cell Dn
α, the induced map ϕα : Dn

α → X is called the charac-
teristic map of the cell. As we explained before, the restriction to the
open interior (Dn

α)◦ = Dn
α − Sn−1α

(ϕα)|(Dnα)◦ → X

is a homeomorphism onto its image.

• We will call the image of Dn
α under ϕα in X a closed n-cell of X. We

will refer to n as the dimension of the cell. Since Dn is compact, it is
a compact subset.

• The image of the interior (Dn
α)◦ of Dn

α in X is often called an n-cell or
open n-cell of X and will be denoted by enα. Note that this subset is not
necessarily an open subset of X.

• The C in CW-complex stands for closure finite which means that, for
every cell, ϕα(Sn−1α ) is contained in finitely many cells (of dimension at
most n− 1).

• A cell complex X is called finite-dimensional if there is an n such that
X = SknX. The smallest such n is called the dimension of X, i.e., the
unique n such that SknX = X and Skn−1X ( X.

• A cell complex is called of finite type if each indexing set Jn is finite,
i.e., if only finitely many cells are attached in each step.

• A cell complex is called finite if it is finite-dimensional and of finite type,
i.e., if it has only finitely many cells.

• The dimension of a cell complex is a topological invariant, i.e., it is invari-
ant under homeomorphisms. Moreover, every cell complex is Hausdorff.

• However, a cell complex is compact if and only if it is finite.
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• Note that every nonempty cell complex must have at least one 0-cell.

• The cell structure of a cell complex is in general not unique. Often there
are many different cell structures. We will observe this for example for
the n-sphere.

Here is an important theorem which demonstrates the wide range and impor-
tance of cell complexes:

Compact smooth manifolds are cell complexes

Every compact smooth manifold can be given the structure of a cell complex.

Here some important examples:

• A simple example is given by surfaces of a three-dimensional cube: it
has eight 0-cells, twelve 1-cells, six 2-cells.

• Similarly, every n-simplex is a cell complex. For example, ∆3 has four
0-cells, six 1-cells, four 2-cells, and one 3-cell.

• The sphere Sn is a cell complex with just two cells: one 0-cell e0 (that
is a point) and one n-cell which is attached to e0 via the constant map
Sn−1 → e0. Geometrically, this corresponds to expressing Sn as Dn/∂Dn:
we take the open n-disk Dn \ ∂Dn and collapse the boudnary ∂Dn to a
single point which is, say, the north pole N = e0.
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• The n-sphere X = Sn can also be equipped with a different cell struc-
ture:

We start with two 0-cells which give us the 0-skeleton

Sk0X
≈−→ S0.

Now we attach two 1-cells via the homeomorphism f : S0 ≈−→ Sk0X. This
gives us one 1-cell as the upper half-circle and one 1-cell as the lower
half-circle and

S1 ≈−→ Sk1X.

Then we attach two 2-cells as the upper and lower hemisphere along

the map S1 ≈−→ Sk1, i.e., this gives us

Sk2X
≈−→ S2

with Sk1X ≈ S1 as the equator of S2. Now we continue this procedure
until we reach Sn.

Hence, in this cell structure on Sn, there are exactly two k-cells in
each dimension k = 0, . . . ,n.

• Real projective space RPn is a cell complex with one cell in each
dimension up to n. To show this we proceed inductively. We know that
RP0 consists of a single point, since it is S0 whose two antipodal points
are identified.

Now we would like to understand how RPn can be constructed from
RPn−1:

We embed Dn as the upper hemisphere into Sn, i.e., we consider Dn

as {(x0, . . . ,xn) ∈ Sn : x0 ≥ 0}. Then

RPn = Sn/(x ∼ −x) = Dn/(x ∼ −x for boundary points x ∈ ∂Dn).
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But ∂Dn is just Sn−1. Hence the quotient map

Sn−1 → Sn−1/ ∼ = RPn−1

attaches an n-cell en, the open interior of Dn, at RPn−1.
Thus we obtain RPn from RPn−1 by attaching one n-cell via the quotient

map Sn−1 → RPn−1.
Summarizing, we have shown that RPn is a cell complex with one cell

in each dimension from 0 to n.

• We can continue this process and build the infinite projective space
RP∞ :=

⋃
nRPn. It is a cell complex with one cell in each dimension. We

can think of RP∞ as the space of lines in R∞ =
⋃
nRn.

• Complex projective space CPn is a cell complex.
Let (z0 : . . . : zn) denote the homogeneous coordinates of a point in

CPn. Let ϕ : D2n → CPn be given by

(z0, . . . ,zn−1) 7→ (z0 : z1 : . . . : zn−1 : 1− (
n−1∑
i=0

|z2i |)1/2).

Then ϕ sends ∂D2n to the points with zn = 0, i.e., into CPn−1.
Let f denote the restriction of ϕ to S2n−1 = ∂D2n. Then ϕ factors

through D2n ∪f CPn−1, i.e., we get a commutatuve diagram with an in-
duced dotted arrow

S2n−1
� _

��

f
// CPn−1

��

��

D2n

ϕ
--

// CPn−1 ∪f D2n

g

''

CPn.

The induced map

g : D2n ∪f CPn−1 → CPn

Since we can rescale the nth coordinate, this map is bijective. Hence it
is a continuous bijection defined on a compact space. We learned earlier
that this implies that g is a homeomorphism.

We conclude that CPn is a cell complex with exactly one i-cell in each
even dimension up to 2n.
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• Again we could continue this process and build infinite complex pro-
jective space CP∞ which is a cell complex with one i-cell in each even
dimension.

Finally, we would like to have a good notion of subspace in a cell complex
which respects the cell structure. It turns out that it is not sufficient to just
require to have a subspace. Though not much more is actually required. For,
a subspace A ⊂ X is subcomplex, or sub-CW-complex, if it is closed and a
union of cells of X.

These conditions imply that A is a cell complex on its own. For, since A is
closed the characteristic maps of each cell of A has image in A and so does each
attaching map. Hence the cells with their characteristic maps which lie in A
provide A with a cell structure.

A more technical definition sounds like this:

Subcomplexes

Let X be a cell complex with attaching maps {fα : Sn−1α → Skn−1X : α ∈
Jn, n ≥ 0}.
A subcomplex A of X is a closed subspace A ⊆ X such that for all n ≥ 0,
there is a subset J ′n ⊂ Jn so that SknA := A ∩ SknX turns A into a cell
complex with attaching maps {fβ : β ∈ J ′n, n ≥ 0}.
A pair (X,A) which consists of a CW-complex X and a subcomplex A is
called a CW-pair.

Examples of CW-pairs are given by

• each skeleton SknX of a cell complex X;

• RPk ⊂ RPn for every k ≤ n;

• CPk ⊂ CPn for every k ≤ n;

• the spheres Sk ⊂ Sn for every k ≤ n but only for the second cell
structure with two i-cells in each dimension.

With the first cell structure on Sn with one 0-cell and one n-cell, Sk is not
a subcomplex of Sn.

The next step is to study the homology of cell complexes...
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