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Lecture 13

13. CELL COMPLEXES

We return to an important type of topological spaces, called CW- or cell com-
plexes, that is particularly convenient for our purposes in many respects. It will
turn out that this type of spaces both appears very frequently and is quite acces-
sible for calculations. In particular, we will learn next week that the homology
of a cell complex is quite easy to compute.

The idea of creating a cell complex is to successively glue cells to what has
already been built. The general procedure for doing this is the following:

Gluing a space along a map

Suppose we have a space X and a pair (B,A) of spaces. We define a space
X Uy B, often also denoted X Uy B if the map f is either understood or
just the inclusion, which fits into the diagram

A;)X

|

B—— X U; B
by
XUsB:=(XUB)/(a~ f(a) for all a € A).

We say that X Uy B arises from attaching B to X along f , or along A,
and f is called an attaching map.

By its construction, there are two types of equivalence classes in X Uy B:

e classes which consist of single points of B — A,
e classes which consist of sets {z} U f~1(X) for any point = € X.

Note that the lower horizontal map ¢: B — B Uy X arises as part of the
construction. It is given by
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In particular, this shows that pp_4 is a homeomorphism.

The topology of X Uy B is the quotient topology and is characterized by the
universal property: whenever there is a diagram of solid arrows of the form

then there is a unique dotted arrow which makes all triangles commute. We
can reformulate this fact by saying that X U; B is the pushout of the solid
diagram.

For example:

e if X = x consists of just a point, then
XUy B=%xU;B=BJA;
e if A=0, then X Uy B= X U B is just a disjoint union.

A more important example is the following:

Attaching a cell

We consider the pair (D™, S"!) of an n-disk and its boundary. We are
going to think of D™ as an n-cell.

Suppose we are given a map f: S" ' — X. Then we can attach an n-cell
to X via f as

g1 x

D" —— X Uy D™,
We could speed up this process by attaching several cells at once:
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Let us look at some examples:

e Let us start with n = 0 and write (D°,S™') for (x,0)). Attaching 0-cells
to a space X just means adding a set of discrete points to X:

Xu[[DS=xuJ

aed

where J is a set with the discrete topology.
e Now let us attach two 1-cells to a point X = %:

SOI_ISO%*

|

D'U D' —— xU; (D' U DY).

Since there is only one choice for f, we get a figure eight: we start with
two 1-disks D' and then we identify all four boundary points with the
0O-cell. We denote this space by S'Vv S!.

1 %
e
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e We continue with this space and attach one 2-cell: We can think of SV S*
as an empty square where we glue together the horizontal edges and the
vertical edges. Then we glue in a 2-cell into the square by attaching its
boundary to the edges a, b, a=!, and b~!, i.e., by walking clockwise:

gl = gy 5

| l

D? — (S'v SYHuy D? =T2

The result of this procedure is a two-dimensional torus.
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This example motivates the following key concept:

Cell complex

A cell complex, or CW-complex, is a space X equipped with a sequence

of subspaces

such that
e X is the union of the Sk, Xs,
e for all n, Sk, X arises from Sk,,_; by attaching n-cells, i.e., there

is a pushout diagram
[, Sot 1" Sk, 1 X
HaEJn DZ T San

The space Sk, X is called the n-skeleton of X.

In our example of the torus 72 the skeleta are

SkoT? =, Sk, 7% = S v St Sk,T? = T2,

Before we study more examples, we fix more terminology and list some facts
which should help clarify the picture:

e The topology of a cell complex is determined by its skeleta, i.e., a subset

U C X is open (closed) if and only if U NSk, X is open (closed) for all n.

e In fact, the topology on X is determined by its cells, i.e., U is open
(closed) in X if and only its intersection with each cell is open (closed),
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or equivalently, if ¢ (U) is open (closed) in each D”. This topology is
called the weak topology and explains the W in CW-complez.

e That implies that a map g: X — Y is continuous if and only if its restric-
tion to each skeleton is continuous, or equivalently, if and only if

go@,: DI =Y is continuous for all D.

e For any n-cell D!, the induced map ¢,: DI — X is called the charac-
teristic map of the cell. As we explained before, the restriction to the
open interior (D")° = DI — S"~1

(9004)|(Dg)0 — X

is a homeomorphism onto its image.

e We will call the image of D! under ¢, in X a closed n-cell of X. We
will refer to n as the dimension of the cell. Since D" is compact, it is
a compact subset.

e The image of the interior (D)° of D7 in X is often called an n-cell or
open n-cell of X and will be denoted by e]}. Note that this subset is not
necessarily an open subset of X.

e The C in CW-complex stands for closure finite which means that, for
every cell, p,(S"1) is contained in finitely many cells (of dimension at
most n — 1).

e A cell complex X is called finite-dimensional if there is an n such that
X = Sk, X. The smallest such n is called the dimension of X, i.e., the
unique n such that Sk, X = X and Sk, ;X C X.

e A cell complex is called of finite type if each indexing set J, is finite,
i.e., if only finitely many cells are attached in each step.

e A cell complex is called finite if it is finite-dimensional and of finite type,
i.e., if it has only finitely many cells.

e The dimension of a cell complex is a topological invariant, i.e., it is invari-
ant under homeomorphisms. Moreover, every cell complex is Hausdorff.

e However, a cell complex is compact if and only if it is finite.



e Note that every nonempty cell complex must have at least one 0-cell.

e The cell structure of a cell complex is in general not unique. Often there
are many different cell structures. We will observe this for example for
the n-sphere.

Here is an important theorem which demonstrates the wide range and impor-
tance of cell complexes:

Compact smooth manifolds are cell complexes

Every compact smooth manifold can be given the structure of a cell complex.

Here some important examples:

0-cel( o-cel(
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o A simple example is given by surfaces of a three-dimensional cube: it
has eight 0-cells, twelve 1-cells, six 2-cells.

e Similarly, every n-simplex is a cell complex. For example, A% has four
0-cells, six 1-cells, four 2-cells, and one 3-cell.

e The sphere S™ is a cell complex with just two cells: one 0-cell ¢° (that
is a point) and one n-cell which is attached to €° via the constant map
St — €Y. Geometrically, this corresponds to expressing S™ as D"/0D"™:
we take the open n-disk D" \ dD™ and collapse the boudnary dD" to a
single point which is, say, the north pole N = €°.



e The n-sphere X = S™ can also be equipped with a different cell struc-
ture:
We start with two 0-cells which give us the 0O-skeleton

SkoX = S0,

Now we attach two 1-cells via the homeomorphism f: S© = SkoX. This
gives us one 1-cell as the upper half-circle and one 1-cell as the lower
half-circle and

St = Sk X,

Then we attach two 2-cells as the upper and lower hemisphere along
the map S* = Sky, i.e., this gives us

Sko X = S2

with Sk; X ~ S! as the equator of S?. Now we continue this procedure
until we reach S"™.

Hence, in this cell structure on S™, there are exactly two k-cells in
each dimension k£ =0,... n.

e Real projective space RP" is a cell complex with one cell in each
dimension up to n. To show this we proceed inductively. We know that
RPY consists of a single point, since it is S° whose two antipodal points
are identified.

Now we would like to understand how RP™ can be constructed from
RP™ 1

We embed D" as the upper hemisphere into S™, i.e., we consider D"
as {(zo,...,xn) € 8" : kg > 0}. Then

RP" = S"/(x ~ —x) = D"/(x ~ —x for boundary points = € 9D").



But D" is just S"~ 1. Hence the quotient map
Sn—l SN Sn—l/ ~ — RPn—l

attaches an n-cell e”, the open interior of D", at RP"~!.

Thus we obtain RP” from RP"~! by attaching one n-cell via the quotient
map S"~! — RP" 1,

Summarizing, we have shown that RP" is a cell complex with one cell
in each dimension from 0 to n.

We can continue this process and build the infinite projective space
RP*> := [, RP™. It is a cell complex with one cell in each dimension. We
can think of RP> as the space of lines in R* = (J, R".

Complex projective space CP" is a cell complex.
Let (20 : ... : 2z,) denote the homogeneous coordinates of a point in
CP". Let ¢: D** — CP" be given by

n—1

(205 o vzn1) = (o210t zpmg i 1 — (Z |22])1/2).
i=0
Then ¢ sends D" to the points with 2, = 0, i.e., into CP"!,
Let f denote the restriction of ¢ to S?*~! = 9D?". Then ¢ factors
through D** Uy CP"!, i.e., we get a commutatuve diagram with an in-
duced dotted arrow

G2n-1 f cpr-1

L

D2n CPn_l Uf D2n

The induced map
g: D™ Uy Cp™ ! — CP"

Since we can rescale the nth coordinate, this map is bijective. Hence it
is a continuous bijection defined on a compact space. We learned earlier
that this implies that ¢g is a homeomorphism.

We conclude that CP™ is a cell complex with exactly one i-cell in each
even dimension up to 2n.
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e Again we could continue this process and build infinite complex pro-
jective space CP* which is a cell complex with one i-cell in each even
dimension.

Finally, we would like to have a good notion of subspace in a cell complex
which respects the cell structure. It turns out that it is not sufficient to just
require to have a subspace. Though not much more is actually required. For,
a subspace A C X is subcomplex, or sub-CW-complex, if it is closed and a
union of cells of X.

These conditions imply that A is a cell complex on its own. For, since A is
closed the characteristic maps of each cell of A has image in A and so does each
attaching map. Hence the cells with their characteristic maps which lie in A
provide A with a cell structure.

A more technical definition sounds like this:

Subcomplexes

Let X be a cell complex with attaching maps {f,: S"™* — Sk, 1 X : a €
Jn,n > 0}.

A subcomplex A of X is a closed subspace A C X such that for all n > 0,
there is a subset J, C J, so that Sk, A := AN Sk, X turns A into a cell
complex with attaching maps {fs : 5 € J;,n > 0}.

A pair (X,A) which consists of a CW-complex X and a subcomplex A is
called a CW-pair.

Examples of CW-pairs are given by

e cach skeleton Sk, X of a cell complex X;
e RP* C RP" for every k < n;
e CP* c CP" for every k < n;

e the spheres S¥ C S™ for every k < n but only for the second cell
structure with two ¢-cells in each dimension.

With the first cell structure on S™ with one 0-cell and one n-cell, S* is not
a subcomplex of S™.

The next step is to study the homology of cell complexes...
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