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Lecturer: Gereon Quick

Lecture 14

14. Homology of cell complexes

We are going to show that there is a relatively simple procedure to determine
the homology of a cell complex.

Before we start this endeavour we need an auxiliary result which is a conse-
quence of the excision property of singular homology:

Lemma: Homology after collapsing a subspace

Let A ⊂ X be a subspace. Suppose there is another subspace B of X such
that

(a) Ā ⊆ B◦ and
(b) A ↪→ B is a deformation retract.

Then

Hn(X,A)
∼=−→ Hn(X/A,∗)

is an isomorphism for all n.

Proof: We have a commutative diagram

(X,A)

��

i
// (X,B)

��

(X − A,B − A)
j

oo

k
��

(X/A,∗) ī
// (X/A,B/A) (X/A− ∗, B/A− ∗).j̄

oo

Our goal is to show that the left-hand vertical map induces an isomorphism
in homology. We will achieve this by showing that all the other maps induce
isomorphisms in homology:

• The map k is a homeomorphism of pairs and hence induces an iso-
morphism in homology.
• The map j induces an isomorphism in homology by the assumption (a)

and excision.
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• The map i induces a homomorphism of long exact sequences

· · · // Hn(A)

∼=
��

// Hn(X) // Hn(X,A)

��

// · · ·

· · · // Hn(B) // Hn(X) // Hn(X,B) // · · ·

By assumption (b), the left-hand vertical arrow is an isomorphism for
all n. By the Five-Lemma this implies that i induces an isomorphism
in homology.
• For the map ī, we observe that the retraction ρ : B → A ↪→ B induces a

map ρ̄ : B/A→ A/A = ∗ ↪→ B/A.
Moreover, the homotopy B × I → B between ρ and the identity of B

is constant on A. Thus it induces a homotopy B/A× I → B/A between
ρ̄ and the identity of B/A.

In other words, ∗ → B/A is a deformation retract. Hence the long
exact sequence and the Five-Lemma imply that ī induces an isomorphism
in homlogy.
• Finally, we have ∗̄ ⊂ (B/A)◦ by definition of the quotient topology. Hence

map j̄ induces an isomorphism in homology by excision.

QED

Corollary: Homology of a bouquet of spheres

For any indexing set J , let us write
∨
α∈J S

k
α for the quotient∐

α∈J

Sk−1
α ↪→

∐
α∈J

Dk
α →

∨
α∈J

Skα.

The homology of this space, often called bouquet of k-spheres, is given by

Hq(
∨
α∈J

Skα,∗) ∼=

{
Z[J ] if q = k

0 if q 6= k

where Z[J ] denotes the free abelian group on the set J .

(Note that the relative homology group in the statement is an example of a
reduced homology that we introduced in last week’s exercises.)

Proof: Each summand Sk−1
α is a subspace of Dk

α for which there is an open
neighborhood Uα such that Sk−1

α ↪→ Uα is a deformation retract (we could even
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take Uα = Dn
α − {0}). Hence we can apply the previous result to conclude

H∗(
∐
α

Dk
α,
∐
α

Sk−1
α )

∼=−→ H∗(
∨
α

Skα,∗).

Hence we reduced to calculate the relative homology on the left-hand side.

To do this, we can apply the long exact sequence of a pair to deduce that

∂ : Hq(
∐
α

Dk
α,
∐
α

Sk−1
α )

∼=−→ Hq−1(
∐
α

Sk−1
α ,∗)

is an isomorphism for all q. Finally, we know that the latter group is isomorphic
to

⊕
α∈J Z = Z[J ] when q = k and 0 otherwise. QED

Now we would like to apply this observation to a cell complex X. If we write
Xk = SkkX for the k-skeleton of X, then we get the following commutative
diagram ∐

α S
k−1
α
� � //

f

��

∐
αD

k
α

//

ϕ

��

∨
α S

k
α

ϕ̄

��

Xk−1
� � // Xk = Xk−1 ∪f (

∐
αD

k
α) // Xk/Xk−1.

(1)

where the right-hand vertical map is induced by ϕ and taking quotients. Since
the restriction of ϕ to the open interior of the n-disks is a homeomorphism
onto its image, this implies that the dotted arrow ϕ̄ is a homeomorphism.

Hence we deduce from the previous result on bouquets of spheres:

Hq(Xk, Xk−1) ∼= Hq(Xk/Xk−1,∗) ∼=

{
Z[Jn] if q = k

0 if q 6= k

where Jn denotes the indexing set of the attached k-cells.

In other words, the relative homology group Hk(Xk, Xk−1) keeps track of
the k-cells of X.

This group will play a crucial role for us today. Let us analyze some conse-
quences of what we have found out about this group.

Let us look at a piece of the long exact sequence of the pair (Xk,Xk−1):

Hq+1(Xk, Xk−1)→ Hq(Xk−1)→ Hq(Xk)→ Hq(Xk, Xk − 1).

For q 6= k, the last term Hq(Xk, Xk − 1) = 0 vanishes and hence the map

Hq(Xk−1)→ Hq(Xk) is surjective.
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For q 6= k−1, the first term Hq+1(Xk, Xk − 1) = 0 vanishes and hence the map

Hq(Xk−1)→ Hq(Xk) is injective.

Hence we have shwon that the inclusion Xk−1 ↪→ Xk induces an isomorphism

Hq(Xk−1)
∼=−→ Hq(Xk) for q 6= k,k − 1.(2)

Hence, for a fixed q > 0, we can observe how Hq(Xk) varies when we let Xk

go through all skeleta of X:

• Hq(X0) = 0 since X0 is a discrete set and the higher homology groups
of points vanish.

• For k = 0, . . . ,q − 1, Hq(Xk) = 0 remains trivial by (2).

• As a consequence, we observe that Hn(Xk) = 0 whenever n > k.

• For k = q, Hq(Xq) is a subgroup of the free abelian group Hq(Xq, Xq−1),
and therfore it is free abelian as well.

• For k = q + 1, Hq(Xq+1) may not be free anymore, i.e., there might be
relations induced by the exact sequence

Hq+1(Xq+1, Xq)→ Hq(Xq)→ Hq(Xq+1)→ 0.

• For k ≥ q + 1, Hq(Xk) remains stable, i.e., the inclusions of skeleta
induce a sequence of isomorphisms

Hq(Xq+1)
∼=−→ Hq(Xq+2)

∼=−→ · · · .

• If X is finite-dimensional, there is a d such that X = Xd. The above
sequence of isomorphisms then implies the inclusion Xq+1 ↪→ X induces
an isomoprhism

Hq(Xk) ∼= Hq(X) for q < k.

• Still, for X finite-dimensional, since Hq(Xq+1)
∼=−→ Hq(X) and since

Hq(Xq)→ Hq(Xq+1)→ Hq(Xq+1, Xq) = 0

is exact, we see that

Hq(Xq)→ Hq(X) is surjective.
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• If X is infinite-dimensional, the group Hq(Xk) still maps isomorphically
into Hq(X) for q < k. For, the image of a standard simplex is compact
and therefore lands in a finite subcomplex. Hence the union of the
images of a finite collection of standard simplices is still compact and
therefore also lands in a finite subcomplex. Hence it lands in a finite
skeleton. Thus any q-chain in X is the image of a chain in a finite
skeleton. For the same reason, if c ∈ Sq(X) is a boundary, then it is a
boundary in Sq(Xm) for some m ≥ q.

• In summary, all the q-dimensional homology of X is created in the q-
skeleton Xq, and all the relations in Hq(X) occur in the q + 1-skeleton
Xq+1.

The key points of this disussion are:

Proposition: The homology is governed by the skeleta

For any k, q ≥ 0 and cell complex X, we have
• Hq(Xk) = 0 for k < q and

• Hq(Xk)
∼=−→ Hq(X) for k > q.

In particular, Hq(X) = 0 if q is bigger than the dimension of the cell compelx
X.

Now we would like to find an efficient way to calculate the homology of our
cell complex X. Apparently, the group Hn(Xn, Xn−1) carries crucial information
about X. Therefore, we are going to give it a new name:

Cellular n-chains

The group of cellular n-chains in a cell complex X is defined to be

Cn(X) := Hn(Xn, Xn−1).

We claim that these groups sit inside a sequence of homomorphisms who form
a chain complex. The differential

dn : Cn(X)→ Cn−1(X)
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is defined as the composite

Cn(X) = Hn(Xn, Xn−1)

∂n ))

dn
// Hn−1(Xn−1, Xn−2) = Cn−1(X)

Hn−1(Xn−1)

jn−1

44

where ∂n is the connecting homomorphism in the long exact sequence of pairs and
jn−1 is the homomorphism induced by the inclusion (Xn−1, ∅) ↪→ (Xn−1, Xn−2).

To show that dn ◦ dn+1 = 0 we consider the commutative diagram:

Cn+1(X) = Hn+1(Xn+1, Xn)

∂n+1

��

dn+1

++

Hn−1(Xn−2) = 0

��

Hn(Xn) �
� jn

//

��

=0

11Cn(X) = Hn(Xn, Xn−1)
dn

++

∂n
// Hn−1(Xn−1)

� _

jn−1

��

Hn(Xn+1)

��

Cn−1(X) = Hn−1(Xn−1, Xn−2)

0 = Hn(Xn+1, Xn)

Since j and ∂ are part of long exact sequences, we know j ◦ ∂ = 0 and get

dn ◦ dn+1 = (jn−1 ◦ ∂n) ◦ (jn ◦ ∂n+1) = 0.

Cellular chain complex

Thus (C∗(X), d) is a chain complex. It is called the cellular chain com-
plex.

Now we would like to determine the homology of this chain complex.

• To do this we need to understand the kernel of d:

Ker (dn) = Ker (jn−1 ◦ ∂n).

Since jn−1 is injective, we get

Ker (dn) = Ker (∂n) = Im (jn) = Hn(Xn)

where the middle identity is implied by the exactness of the long exact se-
quence these maps are part of, and the last identity is implied by the fact that
jn : Hn(Xn)→ Hn(Xn, Xn−1) is injective.



7

• For the image of d, we use again that jn is injective and get

Im (dn+1) = jn(Im (∂n+1)) ∼= Im (∂n+1) ⊆ Hn(Xn).

Since the left-hand column in the above big diagram is exact, we know

Hn(Xn)/Im (∂n+1) ∼= Hn(Xn+1).

In other words, we just proved:

Hn(C∗(X)) = Hn(Xn)/Im (∂n+1) ∼= Hn(Xn+1).

But we had already showedHn(Xn+1) ∼= Hn(X). Hence we proved the following
important result:

Theorem: Cellular Homology

For a cell complex X, there is an isomorphism

H∗(C∗(X)) ∼= H∗(X)

which is functorial with respect to filtration-perserving maps between
cell complexes.

In this theorem we are referring to maps which preserve the skeleton structure
of cell complexes. We should better make this concept precise:

Maps between cell complexes

• A filtration on a space X is a sequence of subspaces

X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ Xn+1 ⊆ . . . ⊆ X.

such that X can be written as the union of these subspaces. If X is a space
together with a filtration, we call X a filtered space.
• For example, every cell complex has a filtration by its skeleta.
• Let X and Y be filtered spaces. A continuous map f : X → Y is called
filtration-preserving if f(Xp) ⊂ Yp for all p.
• A map between cell complexes is called cellular if it preserves the filtra-
tion by skeleta.

In other words, if we are given two cell complexes and care about their cell
structure, we should only consider filtration-preserving maps between them.

An immediate and very useful consequence of the above theorem is:
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Corollary: Homology of even cell complexes

Let X be a cell complex with only even cells, i.e., the inclusion X2k ↪→ X2k+1

is an isomorphism for all k. Then

H∗(X) ∼= C∗(X).

In particular, Hn(X) is free ableian for all n, Hn(X) = 0 for odd n, and the
rank of Hn(X) for even n is the number of n-cells.

For example, recall that complex projective n-space CPn has exactly one cell
in each even dimension up to 2n. Hence as an application we can read off the
homology of complex projective space:

Hk(CPn) =

{
Z for 0 ≤ k ≤ 2n and k even

0 for k odd.

Note to the theorem and corollary

We should keep in mind that the homology of X is independent of any cell
structures. We defined it long before we knew that cell complexes exist.
The theorem shows that knowing a cell structure on X can nevertheless be
very helpful for computing H∗(X).
Moreover, we learned that the cell structure on any given cell complex may
not be unique. We saw for example two different cell structures on Sn.
However, the theorem tells us that any cell strucure one can construct on X
has to obey certain constraints what are induced by the fact the homology
of the cellular chain complex is H∗(X).
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