
MA3403 Algebraic Topology
Lecturer: Gereon Quick

Lecture 15

15. Computations of cell homologies and Euler characteristic

• Homology of real projective n-space

As another application of the theorem on the cellular chain complex and the ho-
mology of cell complexes we are going to compute the homology of real projective
space.

First of all, recall that attaching and characteristic maps assemble to a com-
mutative diagram

(
∐
Dn,

∐
Sn−1)

((

// (Xn, Xn−1)

��

(
∨
Sn, ∗).

We have shown that all these maps induce isomorphisms in homology. In partic-
ular,

Hn(
∐

Dn,
∐

Sn−1)
∼=−→ Cn(X) = Hn(Xn, Xn−1).(1)

We are now going to exploit this fact for the computation of H∗(RPn).

Recall that the cell structure of RPn is such that

• Skk(RPn) = RPk and
• there is exactly one k-cell in each dimension k = 0, . . . ,n. We denote this
k-cell by ek.

Hence the cellular chain complex looks like this:

0 // Cn(RPn)
dn
// · · · d2

// C1(RPn)
d1
// C0(RPn) // 0

0 // Z[en]
dn

// · · ·
d2

// Z[e1]
d1

// Z[e0] // 0

In order to compute the homology of this chain complex, we need to determine
the differentials dn:
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• We know that H0(RPn) is Z = Z[e0]. That implies that the differential
d1 must be trivial.
• For k > 1, the differential dk is defined as the top row in the following

commutative diagram

Ck(RPn) = Hk(RPk,RPk−1)
∂k
// Hk−1(RPk−1)

jn−1
// Hk−1(RPk−1,RPk−2) = Ck−1(RPn)

Hk(D
k, Sk−1)

∼=

OO

∂k
// Hk−1(Sk−1)

Hk−1(π)

OO

// Hk−1(Sk−1,∗)

∼=

OO

The map π : Sk−1 → RPk−1 is the attaching map of the k-cell in RPn.
The outer vertical maps are isomorphisms by our discussion of diagram
(1). We also know that the lower differential ∂k is an isomorphism by
our original calculation of the homology of the sphere.

Hence, in order to understand the effect of the differential dk, we need
to uderstand the effect of the maps in the following commutative diagram:

RPk−1 q
// RPk−1/RPk−2

≈
��

Sk−1

π

OO

g
// Sk−1

(2)

where q is the quotient map. In other words, we need to calculate the
degree of the lower horizonatal map g.

The composite

Sk−1 π−→ RPk−1 q−→ RPk−1/RPk−2

pinches the subspace Sk−2 ⊂ Sk−1 to a point.

Hence the lower horizontal map g in (2) is given by

Sk−1 π
//

pinch equator
))

RPk−1 q
// Sk−1

Sk−1/Sk−2 = Sk−1
− ∨ Sk−1

+ .

µ

55
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To determine the effect of µ, we observe that the subspace Sk−1−Sk−2

consists of two components. Let us denote these two components by
(Sk−1 − Sk−2)+ and (Sk−1 − Sk−2)−, respectively. The restriction of
q ◦ π to each component of Sk−1 − Sk−2 is a homeomorphism onto
RPk−1 − RPk−2.

Let us write (q ◦ π)+ and (q ◦ π)− for the restrictions of q ◦ π to the
subspaces (Sk−1 − Sk−2)+ and (Sk−1 − Sk−2)−, respectively:

(Sk−1 − Sk−2)+

α

��

(q◦π)+

))

RPk−1 − RPk−2

(Sk−1 − Sk−2)−
(q◦π)−

55

By definition of RPk−1, both (q ◦π)+ and (q ◦π)− are homeomorphisms
and they differ by precomposing with the antipodal map.

Hence the map µ is the identity on one copy of Sk−1 and the antipo-
dal map α on the other copy of Sk−1.

Thus the effect of g on homology is given by

Hk−1(g) : Hk−1(Sk−1)→ Hk−1(Sk−1), σ 7→ σ +Hk−1(α)(σ).

But we know what the effect of Hk−1(α) is. Namely, it is given by
Hk−1(α) = (−1)k−1. Hence

Hk−1(g) = 1 + (−1)k =

{
2 if k is even

0 if k is odd.

Summarizing, we have shown that the cellular chain complex of RPn looks
like:

0→ Z 2−→ Z 0−→ · · · 0−→ Z 2−→ Z 0−→ Z→ 0 if n is even

0→ Z 0−→ Z 2−→ · · · 0−→ Z 2−→ Z 0−→ Z→ 0 if n is odd

where the left-hand copy of Z is in deimension n and the right-hand one is in
dimension 0.

And in words: in real projective space, odd cells create new generators,
whereas even cells create torsion (except for the zero-cell) in the previous
dimension.
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Homomology of RPn

The homology of real projective n-space is given by

Hk(RPn) =


Z k = 0

Z k = n is odd

Z/2 0 < k < n and k is odd

0 otherwise.

• What homology sees and does not see

The example of RPn indicates what kind of structure of a cell complex singular
homology can detect and what it cannot detect and also how we can calculate
the differential in the cellular chain complex.

Let X be a cell complex. Its cell structure is determined by attaching maps∐
Sn−1
α → Xn−1.

Knowing thses maps, up to homotopy, determines the homotopy type of the cell
complex X.

However, homology does not record all of the information of the attaching
maps. For, homology only sees the effect of the composite obtained by pinching
out Xn−1: ∐

α∈Jn S
n−1
α

//

''

Xn−1

��

// Xn−1/Xn−2

≈
ww∨

β∈Jn−1
Sn−1
β .

In other words, homology only records what is going on modulo sub-
skeleta. However, we will see now that homolgy does a pretty good job at this
recording.

Let us try to understand this picture a bit better. For each α, the left-hand
diagonal map can be described as the composite

Sn−1
α

fα−→ Xn−1

qαβ−−→ Xn−1/(Xn−1 − enβ) =: Sn−1
β
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where qαβ is the quotient map. Moreover, we identify the quotient Xn−1/(Xn−1−
enβ) with the boundary Sn−1

β of the cell enβ. Note that this map might be trivial
from some (or all) β.

The sum of the effect of these maps in homology is actually the differential dn
in the cellular chain complex. For we have a commutative diagram

Hn(
∨
α S

n−1
α ,∗)

Hn(ϕ̄) ∼=
��

∂n
// Hn−1(

∐
α S

n−1
α )

��

∑
α,β Hn−1(qαβ◦fα)

// Hn(
∨
β S

n−1
β ,∗)

∼=
��

Hn(Xn, Xn−1)

dn

44∂n

// Hn−1(Xn−1)
jn−1

// Hn−1(Xn−1, Xn−2).

We conclude from this discussion:

Cellular differentials are sums of degrees

With the above notations, the effect of the cellular differential on the
generator in Cn(X) which corresponds to the cell enα in X is given by the
sum of degrees

dn([enα]) =
∑
β

Hn−1(qαβ ◦ fα)([enα]) =
∑
β

deg(qαβ ◦ fα) · [enα].

In other words, in order to compute the cellular differential we need to calculate
the degrees of various maps.

• Euler characteristic of cell complexes

Euler characteristic of finite CW -complexes

Let X be a finite cell complex. Let ck denote the number of k-cells in X.
Then the Euler characteristic of X is defined to be the integer given by
the finite sum

χ(X) =
∑
k

(−1)kck.
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The main result on χ(X) we are going to prove today is that it only depends
on the homotopy type of X and is, in particular, independent of the given
cell structure of X. We are going to prove this by showing that χ(X) can be
computed using the singular homology of X.

Recall that we have seen an Euler number for polyhedra in the first lecture. It
was defined as the number of vertices minus the number of edges plus the number
of faces. This fits well with the above definition for a finite cell complex.

For, if we assume the invariance of χ for a moment, then we get χ(S2) = 2
using the standard cell structure on S2, i.e., one 0-cell and one 2-cell. This
implies that Euler’s polyhedra formula holds.

Corollary: Euler’s polyhedra formula

For any cell structure on the 2-sphere S2 with F 2-cells, E 1-cells and V
0-cells, we have the formula

F − E + V = 2.

As a preparation, we recall some facts about abelian groups.

Let A be an abelian group. Recall that the set of torsion elements is defined
as

Torsion(A) = {a ∈ A : na = 0 for some n 6= 0}.

This set is in fact a subgroup of A. A group is called torsion-free if Torsion(A) =
0. The quotient A/Torsion(A) is always torsion-free.

Now we assume that A is finitely generated. Then Torsion(A) is a finite
abelian group and A/Torsion(A) is a finitely generated free abelian group and
therefore isomorphic to Zr for some integer r. The number r is called the rank
of A denoted by rank(A).

In fact, by choosing generators of A/Torsion(A), we can construct a homomo-
prhism A/Torsion(A) → A which splits the projection map A → A/Torsion(A).
Thus if A is finitely generated abelian, then

A ∼= Torsion(A)⊕ Zr.

We are going to use the following lemma from elementary algebra without
proving it:
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Lemma: Ranks in exact sequences

• Let 0→ A→ B → C → 0 be a short exact sequence of finitely generated
abelian groups. Then the ranks of these groups satisfy

rank(B) = rank(A) + rank(C).

• More generally, for a long exact sequence of finitely generated abelian
groups

0→ An → An−1 → . . .→ A1 → A0 → 0

the ranks satisfy

0 =
n∑
i=0

(−1)irank(Ai).

Now we are euqipped for the proof of the above mentioned result:

Theorem: Euler characteristic via homology

Let X be a finite cell complex. Then the Euler characteristic of X satisfies

χ(X) =
∑
k

(−1)krank(Hk(X)).

Proof: Let ck be again the number of k-cells in the given finite cell structure of
X. Let C∗ := C∗(X) denote the cellular chain complex of X. To simplify the
notation let us denote by Z∗, B∗, and H∗ the cycles, boundaries and homology,
respectively, in this complex.

By their definition, they fit into two short exact sequences:

0→ Zk → Ck → Bk−1 → 0

and

0→ Bk → Zk → Hk → 0,

By our previous study of the cellular chain complex, we know

ck = rank(Ck).
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Hence, using the above discussion, we can rewrite χ(X) as follows:

χ(X) =
∑
k

(−1)krank(Ck)

=
∑
k

(−1)k(rank(Zk) + rank(Bk−1))

=
∑
k

(−1)k(rank(Bk) + rank(Hk) + rank(Bk−1)).

When we take the sum over all k, the summands rank(Bk) and rank(Bk−1)
will cancel out. Thus we get

χ(X) =
∑
k

(−1)krank(Hk).

But by the theorem on the homology of the cellular chain complex, Hk is exactly
the singular homology group Hk(X) of X. QED

Note that the numbers rank(Hk(X) are called the Betti numbers of X. They
had already played an important role in mathematics, before homology groups
had been systematically developed. As the theorem shows, these numbers are an
interesting invariant of a space.

The description of the Euler number in the theorem now generalizes easily:

Definiton: Euler characteristic revisited

Let X be a topological space such that each Hn(X) has finite rank and
that there is an d such that Hn(X) = 0 for all n > d. Then the Euler
characteristic of X is defined to be the integer given by the finite sum

χ(X) =
∑
k

(−1)krank(Hk(X)).

• Designing cell complexes

For example, for m ∈ Z, we can easily construct a space X with Hn(X) = Z/m
and H̃i(X) = 0 for i 6= n. We start with Sn and attach an n + 1-cell to it via a
map f : Sn → Sn of degree m. The cellular chain complex of this space is

0→ Z m−→ Z→ 0

with the copies of Z in dimensions n + 1 and n, respectively. The homology of
this space is exactly what we wanted.
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This procedure can easily be generalized.

Theorem: Moore spaces

Let A∗ be any graded abelian group with An = 0 for n < 0. Then there
exists a cell complex X with H̃∗(X) = A∗.

We are going to prove this result in the next lecture.
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