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Lecturer: Gereon Quick

Lecture 16

16. Designing homology groups and homology with coefficients

• Designing cell complexes

We announced last time that cell complexes enable us to design spaces with
prescribed homology groups. We are going to prove this result today.

We will need a construction on spaces that we have already used in special
cases.

Recall that the wedge X ∨ Y of two pointed spaces (X,x) and (Y,y) is
defined as the quotient of XtY modulo x ∼ y, i.e., the disjoint union with x and
y identified. We can think of X ∨ Y glued together at the joint point [x] = [y].
This generalizes the wedge of spheres that we have seen before. This construction
generalizes to infinite wedges.

If each point xα is a deformation retract of a neighborhood Uα in Xα, then
the wedge satisfies a formula for reduced homology that we are used to for the
homology of disjoint unions:

H̃∗(
∨
α

Xα) ∼=
⊕
α

H̃∗(Xα).

Now we can prove the following result:

Theorem: Moore spaces

Let A∗ be any graded abelian group with An = 0 for n < 0. Then there
exists a cell complex X with H̃∗(X) = A∗.

Proof: Let us start with just a single abelian group A. By choosing generators
for A, we can define a surjective homomorphism

F0 → A

from a free abelian group F0. The kernel of this homomorphism, denoted by
F1, is also free, since it is a subgroup of a free abelian group.

We write J0 for a minimal set of generators of F0 such that we have a surjection
F0 → A and J1 for a minimal set of generators of F1.
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For n ≥ 1, we define Xn to be

Xn :=
∨
α∈J0

Snα.

The nth homology of Xn is Hn(Xn) = Z[J0].

Now we are going to define an attaching map

f :
∐
β∈J1

Snβ → Xn

by specifying it on each summand Snβ .

In F0, we can write the generator β of F1 as a linear combination of the gen-
erators of F0

β =
s∑
i=1

niαi.

We can reproduce this relation in topology. For, let

Sn →
s∨
i=1

Snαi

be the map obtained by pinching s− 1 circles on Sn to points. The effect of this
map in homology is to send the generator in Hn(Sn) to the s-tuple of generators
in Hn(Snαi):

Hn(Sn)→ Hn(
s∨
i=1

Snαi) =
s⊕
i=1

Hn(Snαi), 1 7→ (1, . . . ,1).

For each i, we choose a map Snαi → Snαi of degree ni.

The map on the summand Snβ is now defined as the composite

Snβ →
s∨
i=1

Snαi →
∨
α

Snα.

Taking the disjoint union of all these maps as attaching maps, we get a cell
complex X whose cellular chain complex looks like

0→ F1 → F0 → 0
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with F0 in dimension n and F1 in dimension n+ 1, and whose homology is

H̃q(X) =

{
A for q = n

0 for q 6= n.

We write M(A,n) for the CW -complex produced this way and call it a Moore
space of type A and n.

Finally, for a graded abelian group A∗ as in the theorem, we define X to be
the wedge of all the M(An,n). QED

Moore spaces are not functorial

It is important to note that the construction of Moore spaces cannot be
turned into a functor Ab → hoTop. This might surprise at first glance.
For given a homomorphism g : A → B we can construct a continuous map
γ : M(A,n)→M(B,n) such that Hn(γ) = g.
However, this construction depends on the various choices we make.
That means that for homomorphisms

A
g1−→ B, and B

g2−→ C

we cannot guarantee that γ2 ◦ γ1 is the same map as the one we would have
constructed by starting with g2 ◦ g1 : A→ C directly.

Despite this caveat, we have witnessed an important pheonmenon that still
motivates a l ot of exciting research:

From Algebra to Topology

The proof demonstrates a common phenomenon in Algebraic Topology.
Whereas our initial goal was to to translate topology into algebra, now
we went in the opposite direction. Starting with an algebraic structure we
modeled a space whose homology reproduces the algebra. Since be-
ing an abelian group is not the only the algebraic structure and homology
not the only invariant out there, we can imagine that the above theorem is
only a first glance at the makings of a huge mathematical industry.
The proof also shows why Topology is particularly well suited for this
endavour. The gluing construction we used for building cell complexes
is unique for topological spaces. Requiring any additional structure
usually stops us from producing cell complexes.
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For example, there are no cell complexes of smooth manifolds or
algebraic varieties. Nevertheless, there are some inventive procedures to
remedy this defect...

• Homology with coefficients

Now it is time to move on and to develop new algebraic invariants which add to
the information we get from singular homology, or possibly simplify computations.

Recall that homology produces abelian groups. As nice as abelian groups are,
it would be good to have additional structure, for example as vector spaces over
a field. So one might wonder if there is a version of singular homology with
values in the category of vector spaces over a field, or more generally the
category of modules over a ring.

Actually, if R is a ring (with unit and commutative), there is an obvious can-
didate for such a theory: We define

Sn(X;R) := RSingn(X)

to be the free R-module over the set Singn(X) of n-simplices. What we have
done so far, was the special case R = Z.

Now we can use the face maps and the same formula we had before for defining
a boundary operator

∂n : Sn(X;R)→ Sn−1(X;R),
∑
j

rjσj 7→
∑
j

∑
i

(−1)irj(σj ◦ φni ).(1)

which is now a homomorphism of R-modules. The same calculations as before
yield ∂ ◦ ∂ = 0.

Now we can form the homology as usual

Hn(X;R) :=
Ker (∂n : Sn(X;R)→ Sn−1(X;R))

Im (∂n+1 : Sn+1(X;R)→ Sn(X;R))
.

For each n ≥ 0, Hn(X;R) is an R-module and is called the singular homology
of X with coefficients in R.
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More generally, if M is any abelian group, we can form the tensor product

Sn(X;M) = Sn(X)⊗Z M =
⊕

σ∈Singn(X)

M

=

{∑
j

mjσj : σj ∈ Singn(X),mj ∈M

}
.

The boundary operator is defined as before by

∂Mn : Sn(X;M)→ Sn−1(X;M), ∂Mn = ∂n ⊗ 1.

More explicitly, ∂Mn is given by the formula in (1) with rjs replaced with mjs.
Since ∂ ◦ ∂ = 0, we get ∂M ◦ ∂M = 0.

Homoglogy with coefficients

For a pair of spaces X,A), we define singular homology of (X,A) with
coefficients in M Hn(X,A;M) to be the nth homology of the chain com-
plex

S∗(X,A;M) :=
S∗(X;M)

S∗(A;M)
.

Homology with coefficients is functorial: That is, a map of pairs

f : (X,A)→ (Y,B)

induces, by composing simplices with f , a homomorphism

f∗ : Hn(X,A;M)→ Hn(Y,B;M) for all n ≥ 0

which we denote just by f∗ to keep the notation simple. Moreover, we have
(g ◦ f)∗ = g∗ ◦ f∗.

Note if M = R is a ring, this is the same definition as above, and for M = Z we
recover Hn(X,A;Z) = Hn(X,A). We will often refer to these groups as integral
homoglogy groups.

If M is an R-module, then the groups Hn(X,A;M) have the additional struc-
ture as an R-module itself.
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Eilenberg-Steenrod Axioms are satisfied

Singular homology with coefficients in M satisfies the Eilenberg-Steenrod
axioms with the only modification

Hn(pt;M) =

{
M for n = 0

0 for n > 0.

Since everything we proved for singular homology was based on these proper-
ties, we can transfer basically all our work to homology with coefficients.
Let us point out two crucial facts:

• The calculations for spheres can be transfered and we get

H̃k(S
n;M) =

{
M for k = n

0 otherwise.

• If X is a cell complex, there is a ceullular chain complex

C∗(X;M) with Cn(X;M) =
⊕
enα

M

where the sum is taken over the n-cells of X. As for M = Z, the nth
homology of C∗(X;M) is isomorphic to Hn(X;M).

The reduced homology groups H̃n(X;M) with coefficients in M are defined
as the homoogy groups of the augmented chain complex

. . .→ S1(X;M)→ S0(X;M)
ε−→M → 0

where ε is the homomorphism which sends
∑

jmjσj to
∑

jmj ∈M .

For a homomorphism of groups ϕ : M → N there is an induced morphism
of chain complexes S∗(X,A;M) → S∗(X,A;N) which induces a homomorphism
in homology

ϕ∗ : H∗(X,A;M)→ H∗(X,A;N).

This homomorphism is compatible with f∗ for maps of pairs and with long exact
sequences of pairs.

For the calculations using the cellular chain complex, we need to check the
following lemma:
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Lemma: Degrees with coefficients

Let f : Sn → Sn be a map of degree k. Then f∗ : H̃n(Sn;M)→ H̃n(Sn;M)
is given by multiplication with k, where k denotes the image of k in M .

Proof: Let ϕ : Z→M be a homomorphism of groups (0Z 7→ 0M) which sends
1 ∈ Z to an element m ∈M . Then the assertion follows from the commutativity
of the diagram

Z
ϕ

��

Hn(Sn;Z)

ϕ∗
��

f∗
// Hn(Sn;Z)

ϕ∗
��

Z
ϕ

��

M Hn(Sn;M)
f∗
// Hn(Sn;M) M.

That the outer diagram commutes follows from the way we compute the homology
groups of Sn with coefficients Z and M via the Eilenberg-Steenrod axioms. QED

• Why coefficients?

The coefficients that are most often used are the fields Fp, for a prime number
p, and the field Q, R and sometimes C.

In order to get an idea of what happens when we use different coefficients, let
us look at the homology of RPn for R = F2. We use the cellular chain complex
which looks like this

0→ F2 → F2 → . . .→ F2 → F2 → 0.

We showed that the differentials alternated between multiplication by 2 and 0.
But in F2, 2 = 0 which means that all differentials vanish and we get

Hk(RPn;F2) =

{
F2 for 0 ≤ k ≤ n

0 otherwise.

We learn from this example that

• The calculation of F2-homology can be particularly easy, and it might see
more nontrivial groups than integral homology.

• Nevertheless, F2-homology is often sufficient to distinguish between trivial
and nontrivial spaces or maps.
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The situation is quite different if we take R to be any field of characteristic
different from two. Then the cellular chain complex of RPn looks like (with
the left-hand copy of R in dimension n)

0→ R
∼=−→ R

0−→ R
∼=−→ . . .

∼=−→ R
0−→ R→ 0

for n even, and

0→ R
0−→ R

∼=−→ R
0−→ . . .

∼=−→ R
0−→ R→ 0

for n odd.

Thus, for n even, we get

Hk(RPn;R) =

{
R for k = 0

0 otherwise

and, for n odd,

Hk(RPn;R) =


R for k = 0

R for k = n

0 otherwise.

In other words, away from 2, real projective n-space looks for R-homology
like a point if n is even and like an n-sphere if n is odd.

This teaches us already that different coefficients can tell quite different
stories.

This notwithstanding one might wonder whether integral homology is the finest
invariant and all other homologies are just coarser variations. This is not the case,
and it is indeed possible that homology with coefficients detects more
than integral homology. Let us look at an example:

Example: When Z/m-homology sees more

Let X = M(Z/m,n) be a Moore space we constructed in the previous
lecture: We start with an n-sphere Sn and form X be attaching an n + 1-
dimensional cell to it via a map f : Sn → Sn of degree m

X = Sn ∪f Dn+1.

Let

q : X → X/Sn ≈ Sn+1
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be the quotient map. It induces a trivial homomorphism in reduced
integral homology. For, the only nontrivial homology occurs in degrees n
and n+ 1 where we have

H̃n+1(X;Z) = 0
q∗−→ H̃n+1(X/S

n;Z)

and

H̃n(X;Z)
q∗−→ H̃n+1(X/S

n;Z) = H̃n(Sn+1;Z) = 0.

Hence integral homology cannot distinguish between the quotient map
and a constant map.
However, Z/m-homology does see the difference between q and a
constant map.
For, the Z/m-cellular chain complex of X is

0→ Z/m m−→ Z/m→ 0

with copies of Z/m in dimensions n + 1 and n. Thus, the Z/m-homology
of X is

H̃k(X;Z/m) =


Z/m if k = n+ 1

Z/m if k = n

0 otherwise.

The long exact sequence of the pair (X,Sn) in dimension n+ 1 then yields

0 = H̃n+1(S
n;Z/m)→ H̃n+1(X;Z/m)

q∗−→ H̃n+1(X/S
n;Z/m).

Since the left-hand group is 0, exactness implies that q∗ is injective and
hence nontrivial, since both H̃n+1(X;Z/m) and H̃n+1(X/S

n;Z/m) are
isomorphic to Z/m.

This example demonstrates that homology groups with coefficients are similar,
but often a bit different than integral homology groups. This raises the question
how different they can be. More generally, we could ask:

Question

Given an R-module M H∗(X;R), what can we deduce about H∗(X;M)?

For example, let M be the Z-module Z/m. One might wonder if Hn(X;Z/m)
is just the quotient Hn(X;Z)/mHn(X;Z), since the latter is isomorphic to the
tensor product Hn(X;Z)⊗ Z/m.
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But we have to be careful. For, we do have a short exact sequence of chain
complexes

0→ S∗(X;Z)
m−→ S∗(X;Z)→ S∗(X;Z/m)→ 0.

Such a short exact sequence induces a long exact sequence of the respective
homology groups a part of which looks like

Hn(X;Z)
m−→ Hn(X;Z)→ Hn(X;Z/m)→ Hn−1(X;Z)

m−→ Hn−1(X;Z).

Using the exactness of this sequence yields a short exact sequence

0→ Hn(X;Z)/mHn(X;Z)→ Hn(X;Z/m)→ m-Torsion(Hn−1(X;Z))→ 0(2)

where m-Torsion(Hn−1(X;Z)) denotes the m-torsion, i.e., the kernel of the map

Hn−1(X;Z)
m−→ Hn−1(X;Z) given by multiplication by m.

In fact, the short exact sequence (2) provides a tool to determine Hn(X;Z/m)
when we know both Hn(X;Z) and Hn−1(X;Z). However, in gerneral, we
will need a more sophisticated method to understand the relationship of
H∗(X;Z)⊗M and H∗(X;M).

As a first generalization, we have the following result:

Long exact sequence of coefficients

Assume we have a short exact sequence of abelian groups

0→M ′ →M →M ′′ → 0.

For any pair of spaces (X,A), there is an induced short exact sequence of
chain complexes

0→ S∗(X,A;M ′)→ S∗(X,A;M)→ S∗(X,A;M ′′)→ 0.

Such a short exact sequence induces a long exact sequence

· · · // Hn+1(X,A;M ′′)

∂

rr

Hn(X,A;M ′) // Hn(X,A;M) // Hn(X,A;M ′′)
∂

rr

Hn−1(X,A;M ′) // · · ·
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