
MA3403 Algebraic Topology
Lecturer: Gereon Quick

Lecture 17

17. Tensor products, Tor and the Universal Coefficient Theorem

Our goal for this lecture is to prove the Universal Coefficient Theorem
for singular homology with coefficients. This will require some preparations in
homological algebra. For some this will be a review. Though to keep everybody
on board, this is what we have to do.

We will not treat the most general cases, but rather focus on the main ideas.
Any text book in homological algebra will provide more general results.

• Tensor products

Let A and B be abelian groups. We would like to combine A and B into just
one object, denoted A⊗B, such a way that having a bilinear homomorphism

f : A×B → C

is the same as having a homomorphism from A⊗B into C.

That f is bilinear means

f(a1 + a2,b) = f(a1,b) + f(a2,b)

f(a,b1 + b2) = f(a,b1) + f(a,b2).

We can achieve this by brute force.

Tensor product

For, we can construct A ⊗ B as the quotient of the free abelian group
generated by the set A×B modulo the subgroup generated by {(a+a′,b)−
(a,b)− (a′,b)} and {(a,b+ b′)− (a,b)− (a,b′)} for all a,a′ ∈ A and b,b′ ∈ B.
We denote the equivalence class of (a,b) in A⊗B by a⊗ b.
We call A⊗B the tensor product of A and B.

Let us collect some immediate observations:

• For any a ∈ A, b ∈ B and any integer n ∈ Z, the relations imply

n(a⊗ b) = (na)⊗ b = a⊗ (nb).
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• The abelian group A⊗ B is generated by elements a⊗ b with a ∈ A and
b ∈ B.
• Elements in the abelian group A⊗B are finite sums of equivalence classes∑m

i=1 ni(ai ⊗ bi).
• The tensor product is symmetric up to isomorphism with isomorphism

given by

A⊗B
∼=−→ B ⊗ A,

m∑
i=1

niai ⊗ bi 7→
m∑
i=1

nibi ⊗ ai.

• The tensor product is associative up to isomorphism:

A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C.

• For homomorphisms f : A → A′ and g : B → B′, there is an induced
homomorphism

f ⊗ g : A⊗B → A′ ⊗B′, (f ⊗ g)(a⊗ b) = f(a)⊗ g(b).

• The tensor product has the desired universal property:

Hombilinear(A×B,C)
∼=−→ HomAb(A⊗B,C),

i.e., if we have a bilinear map A× B → C, then there is a unique (up to
isomorphism) dotted map which makes the diagram commutative

A×B

%%

q
// A⊗B

��

C.

• The universal property of the tensor product implies that we have an
isomorphism

(
⊕
α

Aα)⊗B ∼=
⊕
α

(Aα ⊗B).

Now it is time to see some examples:

• For every abelian group A, we have isomorphisms

A⊗ Z ∼= A ∼= Z⊗ A

which sends a⊗ n 7→ na and inverse a 7→ a⊗ 1.
• For every abelian group A and every m, we have an isomorphism

A⊗ Z/m ∼= A/mA, a⊗ [n] 7→ [an] ∈ A/mA.
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• If M is an abelian group and X a space, we can form the tensor product

Sn(X;M) := Sn(X)⊗M ∼=
⊕

σ∈Singn(X)

M

=

{∑
j

mjσj : σj ∈ Singn(X),mj ∈M

}
.

There is a boundary operator defined by

∂Mn : Sn(X;M)→ Sn−1(X;M), ∂Mn = ∂n ⊗ 1.

This turns S∗(X;M) into a chain complex. The homology of this complex
is the homology of X with coefficients in M .

Tensor products are great. Except for the following:

• Tor functor

Suppose we have an abelian groupM and a surjective homomorphism of abelian
groups

B � C.

Then we can check by looking at the generators that

B ⊗M � C ⊗M

is also surjective.

More generally, we can show that tensor products preserve cokernels:

Lemma: Tensor products preserve cokernels

Let M be an abelian group. Suppose we have an exact sequence

A
i−→ B

j−→ C → 0.

Then taking the tensor product −⊗M yields an exact sequence

A⊗M i⊗1−−→ B ⊗M j⊗1−−→ C ⊗M → 0

where 1 denotes the identity map on M . In other words, the functor −⊗M
is right exact and preserves cokernels.

Proof: We are going to show that −⊗M preserves cokernels. This is in fact
equivalent to the other statements.
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Let f : B ⊗ C → Q be a homomorphism. We need to show that there is a
unique factorization as indicated by the dotted arrow in the diagram

A⊗M i⊗1
//

0
%%

B ⊗M j⊗1
//

f

��

C ⊗M //

yy

0

Q.

By the universal property and the fact that C × M generates C ⊗ M , this is
equivalent to a unique factorization of the diagram of bilinear maps

A×M i×1
//

0
%%

B ×M j×1
//

F
��

C ×M //

yy

0

Q.

But now we only need to find an approproate extension C → Q the existence of
which is implied by assumption. QED

However, suppose we have an injective homomorphism

A ↪→ B.

Then it is in general not the case that

A⊗M → B ⊗M

is injective.

For example, take the map Z 2−→ Z given by multiplication by 2. It is clearly
injective. But if we tensor with Z/2, we get the map

Z/2 2=0−−→ Z/2

which is not injective.

Thus, tensor products do not preserve exact sequences, in general.

We would like to remedy this defect. And, in fact, the tensor product is not
so far from being exact. For, if M is a free abelian group, then the functor
M ⊗− is exact, i.e., it preserves all exact sequences.

We can see this as follows: Assume M is the free abelian group on the set
S. Then M ⊗ N = ⊕SN , since tensoring distributes over direct sums, as we
remarked above.

To exploit this fact we make use of the following observation:
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Lemma: Direct sums of exact sequences

If M ′
i →Mi →M ′′

i is exact for every i ∈ I, then⊕
i

M ′
i →

⊕
i

Mi →
⊕
i

M ′′
i

is exact.

Proof: The composition is zero and if (xi)i is sent to 0 in
⊕

iM
′′
i , then each

xi must be sent to 0 in M ′′
i . Hence each xi comes from some x′i, and hence (xi)i

comes from (x′i)i. We just need to remember to choose x′i = 0 whenever xi = 0.
QED

Now let A be any abelian group. As we did in the previous lecture, we choose
a free abelian group F0 mapping surjectively onto A

F0 � A.

The kernel F1 of this map is also free abelian as a subgroup of a free abelian
group. Hence we get an exact sequence of the form

0→ F1 ↪→ F0 � A.

Free resolutions

Such an exact sequence with F1 and F0 free abelian groups, is called a free
resolution of A of length two.

(Note that the fact that we can always choose such a free resolution of length
two is particular to the case of abelian groups, i.e., Z-modules. For R-modules
over other rings, one might only be able to find projective resolutions of higher
length. The fact that Z is a principal ideal domain, a PID, does the trick.)

For any abelian group M , tensoring these maps with M yields an exact se-
quence

F1 ⊗M → F0 ⊗M → A⊗M → 0.

The kernel of the left-hand map is not necessarily zero, though.

This leads to the following important definition:
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Definition: Tor

The kernel of the map A ⊗ F1 → A ⊗ F0 is called Tor(A,M). Hence by
definition we have an exact sequence

0→ Tor(A,M)→ A⊗ F1 → A⊗ F0 → A⊗M → 0.

This group measures how far −⊗M is from being exact.

Note that if we replace abelian groups with R-modules over other rings than
Z and take tensor products over R, we might have to consider higher Tor-terms.
Hence we should really write TorZ1 (A,M) for Tor(A,M). But we are going to keep
things simple and focus on the idea rather than general technicalities.

It is again time to see some examples:

• If M is a free abelian group, then Tor(A,M) = 0 for any abelian group
A. That follows from the lemma above.

• Let M = Z/m. Then we can take F0 = F1 = Z and

Z m−→ Z→ Z/m→ 0

as a free resolution of Z/m. For an abelian group A, the sequence defining
Tor looks like

0→ Tor(A,Z/m)→ A⊗ Z 1⊗m−−→ A⊗ Z→ A⊗ Z/m→ 0.

Since we know A⊗ Z/m = A/mA, we get

Tor(A,Z/m) = Ker (m : A→ A) = m-torsion in A.

Hence Tor(A,Z/m) is the subgroup of m-torsion elements in A.

• For a concrete case, let us try to calculate Tor(Z/4,Z/6). We use the free
resolution

Z 6−→ Z→ Z/6→ 0.

Tensoring with Z/4 yields

Z/4 2−→ Z/4→ Z/4⊗ Z/6→ 0

where we use 6 = 2 in Z/4. The kernel of Z/4 2−→ Z/4 is Z/2. Thus

Tor(Z/4,Z/6) = Z/2.
• More generally, we get

Tor(Z/n,Z/m) = Z/ gcd(n,m)
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where gcd(n,m) denotes the greatest common divisor of n and m.

The last three examples explain the name Tor.

We should hold our breath for a moment and check a couple of things. For
example, that Tor does not depend on the choice of free resolution, that it is a
functor etc. So let us get to work:

Lemma: Lifting resolutions

Let f : M → N be a homomorphism and 0 → E1
i−→ E0

p−→ M and 0 →
F1

j−→ F0
q−→ N be free resolutions. Then we can lift f to a chain map

f∗ : E∗ → F∗, i.e, to a commutative diagram

0 // E1

f1
��

i
// E0

f0
��

p
// M

f

��

// 0

0 // F1
j
// F0

q
// N // 0.

Moreover, this lift is unique up to chain homotopy, i.e., for another lift f ′∗
of f , there is a chain homotopy h between f∗ and f ′∗:

0 // E1

f ′1
��

f1




// E0

h

~~

f ′0
��

f0




// 0

0 // F1
// F0

// 0.

Proof: • Since E0 is a free abelian group, we know there is some set S of
generators such that E0 = ZS. Now we can map the elements in S to M via the

map E0
p−→ M , and further to N via M

f−→ N . Since F0
q−→ N is surjective, we

can choose lifts in F0 of the elements in f(p(S)). Since a homomorphism on a
free abelian group is determined by the image of the generators, we can extend
this process to get a homomorphism

E0
f0−→ F0 such that f ◦ p = q ◦ f0.

Now can define f1 to be the restriction of f0 to the kernel of p which is E1 by
definition. This yields the desired commutative diagram.
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• Now let f ′0 and f ′1 be another choice of maps which lift f . The differences
g0 := f0 − f ′0 and g1 := f1 − f ′1 are then maps which lift f − f = 0: M → N :

0 // E1

g1
��

i
// E0

g0
��

p
// M

0

��

// 0

0 // F1
j
// F0

q
// N // 0.

Since the diagram commutes, we get q ◦ g0 = p ◦ 0 = 0. Therefore, the universal
property of kernels implies that we can lift g0 to a map h : E0 → F1 such that
j ◦ h = g0:

0 // E1

g1
��

i
// E0

h

~~

g0
��

p
// M

0

��

// 0

0 // F1
j
// F0

q
// N // 0.

Moreover, since E1 is the kernel of i, we must have h◦ i = g1. Thus h is a chain
homotopy between f∗ and f ′∗ (the next map E1 → 0 being trivial). QED

With this result at hand we can finally prove:

Corollary: Tor is independent of resolutions

Tor is independent of the choice of free resolutuon: For any free resolution

0→ E1
i−→ E0 →M of M , there is a unique isomorphism

Ker (i⊗ 1)
∼=−→ Tor(A,M).

Proof: We just apply the previous result to the identity of M to get that,
with whatever resolution we calculate Tor, there is an isomorphism between any
two different ways. And this isomorphism is unique by the theorem on chain
homotopies and their induced maps on homologies. QED

There are other properties of Tor the proof of which we are going to omit:

• Tor is functorial: For any homomorphisms of abelian groups A → A′

and M →M ′, there is a homomorphism

Tor(A,M)→ Tor(A′,M ′).

• Tor is symmetric, i.e., Tor(A,M) ∼= Tor(M,A).

• If M is free, then Tor(A,M) = 0 for any abelian group A.
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• Since the direct sum of free resolutions of each Ai is a free reolution of⊕
iAi, we know that Tor commutes with direct sums:

Tor(
⊕
i

Ai,M) ∼=
⊕
i

Tor(Ai,M),

• Let T (M) be the subgroup of torsion elements of M . Then

Tor(A,M) ∼= Tor(A,T (M))

for any abelian group A.

Now we can prove the main result in this story:

Theorem: Universal Coefficient Theorem

Let C∗ be a chain complex of free abelian groups and let M be an abelian
group. Then there are natural short exact sequences

0→ Hn(C∗)⊗M → Hn(C∗ ⊗M)→ Tor(Hn−1(C∗),M)→ 0

for all n. These sequences split, but the splitting is not natural.

Proof: We write Zn for the kernel and Bn−1 for the image of the differential
d : Cn → Cn−1. Since Cn and Cn−1 are free, both Zn and Bn−1 are free as well.

Together with the differential in C∗, this yields a morphism of short exact
sequences

0 // Zn

dn
��

// Cn

dn
��

dn
// Bn−1

dn−1

��

// 0

0 // Zn−1 // Cn−1
dn−1

// Bn−2 // 0.

By definition of Zn and Bn, the restriction of the differentials to these groups
vanish. This implies that (Z∗,d) and (B∗,d) are chain complexes (with trivial
differentials).

Hence we get a short exact sequence of chain complexes

0→ Z∗ → C∗ → B∗−1 → 0.(1)

Since all groups in these chain complexes are free, tensoring with M yields
again a short exact sequence of chain complexes

0→ Z∗ ⊗M → C∗ ⊗M → B∗−1 ⊗M → 0.
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This can be checked as in the above lemma on direct sums of exact sequences.

Since the differentials in Z∗ and B∗ are trivial, the associated long exact
sequence in homology looks like

· · · → Bn ⊗M
∂n−→ Zn ⊗M → Hn(C∗ ⊗M)→ Bn−1 ⊗M

∂n−1−−−→ Zn−1 ⊗M → · · ·

The connecting homomorphism Bn⊗M
∂n−→ Zn⊗M in this sequence is in⊗ 1,

where in : Bn ↪→ Zn denotes the inclusion and 1 denotes the identity on M . This
can be easily checked using the definition of the connecting homomorphism.

A long exact sequence can always be cut into short exact sequences of the
form

0→ Coker(in ⊗ 1)→ Hn(C∗ ⊗M)→ Ker (in−1 ⊗ 1)→ 0.

Since the tensor product preserves cokernels, the cokernel on the left-hand
side is just

Coker(in ⊗ 1) = Coker(in)⊗M = Zn/Bn ⊗M = Hn(C∗)⊗M.

For Ker (in−1 ⊗ 1), we observe that

Bn−1
in−1−−→ Zn−1 → Hn−1(C∗)→ 0

is a free resolution of Hn−1(C∗). Hence after tensoring with M we get an exact
sequence

0→ Ker (in−1 ⊗ 1)→ Bn−1 ⊗M
in−1⊗1−−−−→ Zn−1 ⊗M → Hn−1(C∗)⊗M → 0.

Thus, since Tor is independent of the chosen free resolution,

Ker (in−1 ⊗ 1) = Tor(Hn−1(C∗),M).

Finally, to obtain the asserted splitting we use that subgroups of free abelian
groups are free. That implies that sequence (1) splits and we have

Cn ∼= Zn ⊕Bn−1.

Tensoring with M yields

Cn ⊗M ∼= (Zn ⊗M)⊕ (Bn−1 ⊗M).

Now one has to work a little bit more to get that this induces a direct sum
decomposition in homology. We skip this here. QED

Since the singular chain complex S∗(X,A) is an example of a chain complex
of free abelian groups, the theorem implies:
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Corollary: UCT for singular homology

For each pair of spaces (X,A) there are split short exact sequences

0→ Hn(X,A)⊗M → Hn(X,A;M)→ Tor(Hn−1(X,A),M)→ 0

for all n, and these sequences are natural with respect to maps of pairs
(X,A)→ (Y,B).

One of the goals of introducing coefficients is to simplify calculations. The
simplest case is often when we consider a field as coefficients. For example, the
finite fields Fp or the rational numbers Q. The UCT tells how we can recover
integral homology from these pieces. We will figure out how this works in the
exercises.

Since we put so much work into defining Tor, let us mention another important
theorem. It tells us how the homology of the product of two spaces depends on
the homology of the individual spaces. For that relation is not as straight forward
as one might hope:

Künneth Theorem

For any pair of spaces X and Y and every n, there is a split short exact
sequence

0→
⊕
p+q=n

(Hp(X)⊗Hq(Y ))→ Hn(X × Y )→
⊕

p+q=n−1

Tor(Hp(X), Hq(Y ))→ 0.

This sequence is natural in X and Y . But the splitting is not natural.

The maps Hp(X)→ Hn(X×Y ) and Hq(Y )→ Hn(X×Y ) arise from the cross
product construction on singular chains. We will not have time to discuss this in
class though.
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