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Lecturer: Gereon Quick

Lecture 20

20. Cup products in cohomology

We are now going to define the additional algebraic structure on cohomol-
ogy that we promised earlier: multiplication.

There are many different ways to define a product structure in cohomology. As
always, each of these ways has its advantages and disadvanteges. We will take a
direct path to the construction. This has the advantage to get a product right
away. The price we are going to pay is that we will have to work harder for some
results later. Note also that, even though we emphasized the importance of the
diagonal map in a previous lecture, this will not become clear from our direct
approach today. Though it matters nevertheless. :)

What we do take advantage of and which would not work for singular chains
is that a cochain is by definition a map to a ring. So we can multiply images of
cochains. Hence we could try to multiply cochains pointwise. We will just need
to figure out the images of which points we need to multiply.

We need to assume that we work with coefficients in a ring R. We will always
assume that R is commutative and that there is a neutral element 1 for multipli-
cation (even though not all arguments require all these assumptions). Our main
examples will be, of course, Z, Z/n, Q.

Definition: Cup products

For cochains ϕ ∈ Sp(X;R) and ψ ∈ Sq(X;R), we define the cup product
ϕ ∪ ψ ∈ Sp+q(X;R) to be the cochain whose value on the p + q-simplex
σ : ∆p+q → X

(ϕ ∪ ψ)(σ) = ϕ(σ|[e0,...,ep])ψ(σ|[ep,...,ep+q ])

where the product is taken in R (here it comes already quite handy that we
work with coefficients in a ring).
Note: The symbol σ|[e0,...,ep] refers to the restriction of σ to the front face
of ∆p+q

σ|[e0,...,ep] : ∆p ↪→ ∆p+q σ−→ X, σ|[e0,...,ep](t0, . . . ,tp) = σ(t0, . . . ,tp,0, . . . ,0).
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Similarly, the symbol σ|[ep,...,ep+q ] refers to the restriction of σ to the back
face of ∆p+q

σ|[ep,...,ep+q ] : ∆q ↪→ ∆p+q σ−→ X, σ|[ep,...,ep+q ](t0, . . . ,tq) = σ(0, . . . ,0,t0, . . . ,tq).

We would can think of this construction as evaluating ϕ on the front face of
σ, evaluating ψ on the back face of σ, and then taking the product of the two
results.

To make sure that this construction yields something meaningful on the level
of cohomology we need to check a couple of things.

Lemma: Cup products and coboundaries

For cochains ϕ ∈ Sp(X;R) and ψ ∈ Sq(X;R), we have

δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)pϕ ∪ δψ.

For the next proof and the remaining lecture, recall that the notation êi means
that the vertex ei is omitted.

Proof: By definition, for a simplex σ ∈ ∆p+q+1 → X, we have

δ(ϕ ∪ ψ)(σ) = (ϕ ∪ ψ)(∂σ)

= (ϕ ∪ ψ)

(
p+q+1∑
i=0

(−1)iσ|[e0,...,êi,...,ep+q+1]

)

=

p+1∑
i=0

(−1)iϕ(σ|[e0,...,êi,...,ep+1])ψ(σ|[ep+1,...,ep+q+1])

+

p+q+1∑
i=p

(−1)iϕ(σ|[e0,...,ep+1])ψ(σ|[ep,...,êi,...,ep+q+1])

where the split into the two sums is justified by the fact that the last term of the
first sum is exactly (−1)-times the first term of the second sum.

Now it remains to observe that these two sums are exactly the definition of
(δϕ ∪ ψ)(σ) and (−1)p(ϕ ∪ δψ)(σ).

QED

We would like this construction to descend to cohomology. Therefore, we
need to check:
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• Assume that ϕ and ψ are cocycles, i.e., δϕ = 0 and δψ = 0. Then ϕ∪ ψ
is a cocycle, since

δ(ϕ ∪ ψ) = δϕ ∪ ψ ± ϕ ∪ δψ = 0± 0 = 0.

• Assume that ϕ is a cocycle, i.e., δϕ = 0, and ψ is a coboundary, i.e.,
there is a cochain ψ′ with ψ = δψ′. Then ϕ ∪ ψ is a coboundary, since

δ(ϕ ∪ ψ′) = δϕ ∪ ψ ± ϕ ∪ δψ′

= 0± ϕ ∪ ψ.

In other words, ϕ ∪ ψ is the image of ±ϕ ∪ ψ′ under δ.
• Similarly, we can show that ϕ∪ψ is a coboundary if ϕ is a coboundary

and ψ is a cocycle.

Thus we have shown:

Cup product in cohomology

For any p and q, the cup product defines a map on cohomology groups

Hp(X;R)×Hq(X;R)
∪−→ Hp+q(X;R).

As we can easily check by evaluating on a simplex:

• The product is associative, i.e.,

(ϕ ∪ ψ) ∪ ξ = ϕ ∪ (ψ ∪ ξ).

• The product is distributive, i.e.,

ϕ ∪ (ψ + ξ) = ϕ ∪ ψ + ϕ ∪ ξ.

• The 0-cocycle ε ∈ H0(X;R) defined by taking value 1 for every 0-simplex
is a neutral element, i.e.,

ε ∪ ϕ = ϕ = ϕ ∪ ε for all ϕ ∈ Hp(X;R).

Before we address commutativity, let us first check how the cup product be-
haves under induced homomorphisms:

Proposition: Cup products are natural

Let f : X → Y be a continuous map and let f ∗ : Hp+q(Y ;R)→ Hp+q(X;R)
be the induced homomorphism. Then

f ∗(ϕ ∪ ψ) = f ∗ϕ ∪ f ∗ψ
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for all ϕ ∈ Hp(Y ;R) and ψ ∈ Hq(Y ;R).

Proof: We can check this formula already on the level of cochains. For, given
a simplex σ : ∆p+q → X, we get

(f ∗ϕ ∪ f ∗ψ)(σ) = f ∗ϕ(σ|[e0,...,ep])f
∗ψ(σ|[ep,...,ep+q ])

= ϕ(f ◦ σ|[e0,...,ep])ψ(f ◦ σ|[ep,...,ep+q ])

= (ϕ ∪ ψ)(f ◦ σ)

= f ∗(ϕ ∪ ψ)(σ).

QED

Now we are going to address the remaining natural property of multiplication:
commutativity. It will turn out that the cup product is not exactly symmetric.
This is annoying, but so is life sometimes. Howver, it is very close to being
symmetric. For the next result, recall that we assume thatR itself is commutative.

Theorem: Cup products are graded commutative

For any classes ϕ ∈ Hp(X;R) and ψ ∈ Hq(X;R), we have

ϕ ∪ ψ = (−1)pq(ψ ∪ ϕ).

The proof of this result will require some efforts. Before we think about it, let
us collect some consequences of this theorem and of the construction of the
cup product in general.

• Many cup products are trivial just for degree reasons. For classes ϕ ∈
Hp(X;R) and ψ ∈ Hq(X;R) with p + q such that Hp+q(X;R) = 0, then
ϕ ∪ ψ = 0 no matter what.
• This can happen for example if X is a finite cell complex.
• If ϕ ∈ Hp(X;R) and p is odd, then

ϕ2 = (−1)p
2

ϕ2 = −ϕ2.

Therefore, 2ϕ2 = 0 in H2p(X;R).
If R is torsion-free or if R is a field of characteristic different from

2, this implies

ϕ2 = 0.



5

Proof for a special case: In order to find a strategy for the proof of the
theorem, let us look at a special case. So let [ϕ], [ψ] ∈ H1(X;R), and let σ : ∆2 →
X be a 2-simplex.

The respective cup products are then determined by their effect on a 2-simplex
σ : ∆2 → X:

(ϕ ∪ ψ)(σ) = ϕ(σ|[e0,e1])ψ(σ|[e1,e2]).

and

(ψ ∪ ϕ)(σ) = ψ(σ|[e0,e1])ϕ(σ|[e1,e2])

= ϕ(σ|[e1,e2])ψ(σ|[e0,e1])

where we use that R is commutative.

Hence in order to show that these two expressions are related, we would like
to reshuffle the vertices. As a first attempt we are going to reverse the order of
all vertices, i.e., we replace σ with σ̄ defined by

σ(ei) = σ(e2−i).

We will also use the notation

σ|[e2,e1,e0] = σ̄

which expresses

σ̄(t0,t1,t2) = σ(t2,t1,t0).

Recall that, a long time ago, we showed that reversing the order of vertices on
a 1-simplex corresponds, at least up to boundaries, multiplying the simplex with
(−1).

Hence we should consider inserting a sign as well. So we define maps

ρ1 : S1(X)→ S1(X) and ρ2 : S2(X)→ S2(X)

both defined by sending a simplex σ to −σ̄.

Surprisingly, the comparison of the two cup products after taking pullbacks
along the ρs becomes easier. For,

(ρ∗1ϕ ∪ ρ∗1ψ)(σ) = ϕ(−σ|[e1,e0])ψ(−σ|[e2,e1])
= ϕ(σ|[e1,e0])ψ(σ|[e2,e1])

and

(ρ∗2(ψ ∪ ϕ))(σ) = −ψ(σ|[e2,e1])ϕ(σ|[e1,e0])

= −ϕ(σ|[e1,e0])ψ(σ|[e2,e1])
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using that R is commutative.

Hence we get

ρ∗1ϕ ∪ ρ∗1ψ = −ρ∗2(ψ ∪ ϕ).

In other words, up to ρ∗1 and ρ∗2 we have shown the desired equality.

Now we remember that we are still on the level of cochains. The theorem is
about an equality of cohomology classes. Hence all we need to show is that ρ∗1
and ρ∗2 will vanish once we pass to cohomology.

This leads to the idea to show that ρ1 and ρ2 are part of a chain map which is
chain homotopic to the identity. So let us try to do this.

First, we want that ρ1 and ρ2 commute with the boundary operator:

(ρ1 ◦ ∂)(σ) = ρ(σ|[e1,e2] − σ|[e0,e2] + σ|[e0,e1])

= −σ|[e2,e1] + σ|[e2,e0] − σ|[e1,e0])
= ∂(−σ|[e2,e1,e0])
= (∂ ◦ ρ2)(σ).

Now we would like to construct a chain homotopy between ρ and the identity
chain map.

The idea is to interpolate between the identity and ρ by permuting the vertices
one after the other until the order is completely reversed. Then we sum up all
these maps. Along the way we need to introduce some signs.

Before we can define maps, we need to recall the prism operator we used to
construct a chain homotopy which showed that singular homology is homotopy
invariant.

These were maps

pni : ∆n+1 → ∆n × [0,1]

determined by

pni (ek) =

{
(ek,0) if 0 ≤ k ≤ i

(ek−1,1) if k > i.

Let us write e0k := (ek,0) and e1k := (ek,1). Given an n-simplex σ, we would like
to compose it with pni and also permute vertices.
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Consider the permutation of simplices

∆n+1 si−→ ∆n+1, (e0, . . . ,en+1) 7→ (e0, . . . ,ei,en+1, . . . ,ei+1).

To simplify the notation, we are going to write

σ|[e0,...,ei,en,...,ei] : ∆n+1 → X

for the n+ 1-simplex defined by the composition of si with

∆n+1 pni−→ ∆n × [0,1]
pr−→ ∆n σ−→ X.

Now we define three maps

h0 : S0(X)→ S1(X), σ 7→ σ|[e0,e0],

for n = 0,

h1 : S1(X)→ S2(X), σ 7→ −σ|[e0,e1,e0] − σ|[e0,e1,e1],
for n = 1, and

h2 : S2(X)→ S3(X), σ 7→ −σ|[e0,e2,e1,e0] + σ|[e0,e1,e2,e1] + σ|[e0,e1,e2,e2]

for n = 2.

(You will see that it does not matter so much how these maps are defined. It
is just important that we have some consistent way of moving from Sn(X) to
Sn+1(X).)

For a 1-simplex σ : ∆1 → X, we compute

(∂ ◦ h1)(σ) = ∂(−σ|[e0,e1,e0] − σ|[e0,e1,e1])
= −(σ|[e1,e0] − σ|[e0,e0] + σ|[e0,e1])

− (σ|[e1,e1] − σ|[e0,e1] + σ|[e0,e1])

and

(h0 ◦ ∂)(σ) = h0(σ|[e1] − σ|[e0])
= σ|[e1,e1] − σ|[e0,e0].

Taking these terms together we get

(∂ ◦ h1)(σ) + (h0 ◦ ∂)(σ) = −σ|[e1,e0] + σ|[e0,e0] − σ|[e0,e1]
− σ|[e1,e1] + σ|[e0,e1] − σ|[e0,e1]
+ σ|[e1,e1] − σ|[e0,e0]
= −σ|[e1,e0] − σ|[e0,e1]
= ρ(σ)− σ.
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Thus, we have shown the homotopy relation

∂ ◦ h1 + h0 ◦ ∂ = ρ1 − id.

Similarly, for a 2-simplex σ : ∆2 → X, we calculate

(∂ ◦ h2)(σ) = ∂(−σ|[e0,e2,e1,e0] − σ|[e0,e1,e2,e1] + σ|[e0,e1,e2,e2])

= −(σ|[e2,e1,e0] − σ|[e0,e1,e0] + σ|[e0,e2,e0] − σ|[e0,e2,e1])
+ (σ|[e1,e2,e1] − σ|[e0,e2,e1] + σ|[e0,e1,e1] − σ|[e0,e1,e2])
+ (σ|[e1,e2,e2] − σ|[e0,e2,e2] + σ|[e0,e1,e2] − σ|[e0,e1,e2])
= −σ|[e2,e1,e0] + σ|[e0,e1,e0] − σ|[e0,e2,e0] + σ|[e1,e2,e1] + σ|[e0,e1,e1]

+ σ|[e1,e2,e2] − σ|[e0,e2,e2] − σ|[e0,e1,e2]
and

(h1 ◦ ∂)(σ) = h1(σ|[e1,e2] − σ|[e0,e2] + σ|[e0,e1])

= −σ|[e1,e2,e1] − σ|[e1,e2,e2] + σ|[e0,e2,e0] + σ|[e0,e2,e2] − σ|[e0,e1,e0] − σ|[e0,e1,e1].

This gives

(∂ ◦ h2 + h1 ◦ ∂)(σ) = ρ2(σ)− σ.

Thus, we have again shown the homotopy relation

∂ ◦ h2 + h1 ◦ ∂ = ρ2 − id.

This indicates that ρ1 and ρ2 are part of a chain map which is chain homotopic
to the identity.

To prove the general case, we adapt this strategy we developed for n = 1.

Proof of the theorem: When we evaluate the two cup products on a simplex
σ : ∆p+q → X, they differ only by a permutation of the vertices of σ. The idea
of the proof consists of

• chosing a nice permuation which simplifies notation and computations,
• and then to construct a chain homotopy between the resulting cup product

and the identity.

Now let us get to work:

• For an n-simplex σ, let σ̄ be the n-simplex obtained by composing it first
with the linear transformation which reverses the order of the vertices.
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In other words,

σ̄(ei) = σ(en−i) for all i = 0, . . . ,n.

or

σ̄(t0, . . . ,tn) = σ(tn, . . . ,t0).

We will also use the notation

σ|[en,...,e0] = σ̄.

For this will make it easier to combine it with the restriction to the n − 1-
dimensional faces of ∆n.

• Since the reversal of the vertices is the product of n + (n − 1) + · · · + 1 =
n(n + 1)/2 many transpositions, our test case motivates the definition of the
homomorphism

ρn : Sn(X)→ Sn(X), ρn(σ) = (−1)
n(n+1)

2 σ̄.

To simplify the notation we will εn := (−1)
n(n+1)

2 .

•We claim that ρ is a map of chain complexes which is chain homotopic
to the identity map. Assuming that the claim is true we can finish the proof
of the theorem as follows.

For σ : ∆p+q → X, we can then calculate

(ρ∗ϕ ∪ ρ∗ψ)(σ) = ϕ(εpσ|[ep,...,e0])ψ(εqσ|[ep+q ,...,ep])

= εpεqϕ(σ|[ep,...,e0])ψ(σ|[ep+q ,...,ep])

and

(ρ∗(ψ ∪ ϕ))(σ) = εp+qψ(σ|[ep+q ,...,ep])ϕ(σ|[ep,...,e0]).

Now we observe

(p+ q)(p+ q + 1)

2
=
p2 + 2pq + q2 + p+ q

2

=
p(p+ 1)

2
+
q(q + 1)

2
+

2pq

2

=
p(p+ 1)

2
+
q(q + 1)

2
+ pq.

Thus

εp+q = (−1)pqεpεq.
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We conclude from these two computations

ρ∗ϕ ∪ ρ∗ψ = (−1)pqρ∗(ψ ∪ ϕ).

Now we use that ρ is chain homotopic to the identity. That implies that when
we pass to cohomology classes, ρ∗ is the identity and we obtain the desired identity

ϕ ∪ ψ = (−1)pq(ψ ∪ ϕ).

Now we are going to prove the claims we made:

• ρ is a chain map.

We need to show that ∂ ◦ρ = ρ◦∂. For an n-simplex σ we calculate the effects
of the two maps:

(ρ ◦ ∂)(σ) = ρ(
n∑
i=0

(−1)iσ|[e0,...,êi,...,en])

= εn−1

n∑
i=0

(−1)iσ|[en,...,êi,...,e0]

= εn−1

n∑
i=0

(−1)n−iσ|[en,...,ên−i,...,e0] by changing the order of summation

= εn−1

n∑
i=0

(−1)i−nσ|[en,...,ên−i,...,e0] using (−1)j = (−1)−j

= εn−1(−1)n
n∑
i=0

(−1)iσ|[en,...,ên−i,...,e0] again using (−1)n = (−1)−n

= εn

n∑
i=0

(−1)iσ|[en,...,ên−i,...,e0]

= ∂(εnσ|[en,...,e0])

= (∂ ◦ ρ)(σ)

where we used the identity εn = (−1)nεn−1.

• There is a chain homotopy between ρ and the identity.

We are going to use again the notation we introduced for the special case above.
The idea for the chain homotopy is to interpolate between ρ which reverses the
order of all vertices and the identity by, step by step, reversing the order up to
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some vertex while the others remain fixed. Then we throw in some signs to make
things work.

We define homomorphisms hn for each n by

hn : Sn(X)→ Sn+1(X)

σ 7→
∑
i=0

(−1)iεn−iσ|[e0,...,ei,en,...,ei].

Now we can show by calculating ∂ ◦hn and hn−1 ◦∂ that h is a chain homotopy,
i.e., we have

∂ ◦ hn + hn−1 ◦ ∂ = ρ− id.

We have

(∂ ◦ hn)(σ) = ∂(
∑
i=0

(−1)iεn−iσ|[e0,...,ei,en,...,ei])

=
∑
j≤i

(−1)i(−1)jεn−iσ|[e0,...,êj ,...,ei,en,...,ei]

+
∑
j≥i

(−1)i(−1)i+1+n−jεn−iσ|[e0,...,ei,en,...,êj ,...,ei].

The overlap of the summation indices is necessary. For, at j = i, only the two
sums together yield all the summands we need:

εnσ|[en,...,e0] +
∑
i>0

εn−iσ|[e0,...,ei−1,en,...,ei]

+
∑
i<n

(−1)n+i+1εn−iσ|[e0,...,ei,en,...,ei+1] − σ|[e0,...,en].

Now we observe that the two sums in the lest epxression cancel out, since if we
replace i by i− 1 in the second sum turns the sign into

(−1)n+iεn−i+1 = −εn−i.

Hence, for j = i, what remains is exactly

εnσ|[en,...,e0] − σ|[e0,...,en] = ρ(σ)− σ.

Hence it suffices to show that the terms with j 6= i in (∂ ◦ hn)(σ) cancel out
with (hn−1 ◦ ∂)(σ). So we calculate
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(hn−1 ◦ ∂)(σ) = hn−1(
∑
j=0

(−1)jσ|[e0,...,êj ,...,en])

=
∑
j<i

(−1)i−1(−1)jεn−iσ|[e0,...,êj ,...,ei,en,...,ei]

+
∑
j>i

(−1)i(−1)jεn−i−1σ|[e0,...,ei,en,...,êj ,...,ei].

Since εn−i = (−1)n−iεn−i−1, the two sums cancel with the two corresponding
sums in (∂ ◦ hn)(σ). Hence h is a chain homotopy between ρ and the identity.
QED
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