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Lecture 21

21. Applications of cup products in cohomology

We are going to see some examples where we calculate or apply multiplicative
structures on cohomology. But we start with a couple of facts we forgot to
mention last time.

Relative cup products

Let (X,A) be a pair of spaces. The formula which specifies the cup product by
its effect on a simplex

(ϕ ∪ ψ)(σ) = ϕ(σ|[e0,...,ep])ψ(σ|[ep,...,ep+q ])

extends to relative cohomology.

For, if σ : ∆p+q → X has image in A, then so does any restriction of σ. Thus,
if either ϕ or ψ vanishes on chains with image in A, then so does ϕ ∪ ψ.

Hence we get relative cup product maps

Hp(X;R)×Hq(X,A;R)→ Hp+q(X,A;R)

Hp(X,A;R)×Hq(X;R)→ Hp+q(X,A;R)

Hp(X,A;R)×Hq(X,A;R)→ Hp+q(X,A;R).

More generally, assume we have two open subsets A and B of X. Then the
formula for ϕ ∪ ψ on cochains implies that cup product yields a map

Sp(X,A;R)× Sq(X,B;R)→ Sp+q(X,A+B;R)

where Sn(X,A+B;R) denotes the subgroup of Sn(X;R) of cochains which vanish
on sums of chains in A and chains in B.

The natural inclusion

Sn(X,A ∪B;R) ↪→ Sn(X,A+B;R)

induces an isomorphism in cohomology. For we have a map of long exact coho-
mology sequences

Hn(A ∪B)

��

// Hn(X)

��

// Hn(X,A ∪B)

��

// Hn+1(A ∪B)

��

// Hn+1(X)

��

Hn(A+B) // Hn(X) // Hn(X,A+B) // Hn+1(A+B) // Hn+1(X)
1
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where we omit the coefficients. The small chain theorem and our results on
cohomology of free chain complexes imply that Hn(A ∪ B;R)

∼=−→ Hn(A + B;R)
is an isomorphism for every n. Thus, the Five-Lemma implies that

Hn(X,A ∪B;R)
∼=−→ Hn(X,A+B;R)

is an isomorphism as well.

Thus composition with this isomorphism gives a cup product map

Hp(X,A;R)×Hq(X,B;R)→ Hp+q(X,A ∪B;R).

Now one can check that all the formulae we proved for the cup product also
hold for the relative cup products.

Cohomology ring

All we are going to say now also works for relative cohomology. But to keep
things simple, we just describe the absolute case.

We will now often drop the symbol ∪ to denote the cup product and just write

αβ = α ∪ β.

The cohomology ring of a space X is the defined as

H∗(X;R) =
⊕
n

Hn(X;R)

as the direct sum of all cohomology groups. Note that, while the symbol ∗
previously often indicated that something holds for an arbitrary degree, we now
use it to denote the direct sum over all degrees.

The product of two sums is defined as

(
∑
i

αi)(
∑
j

βj) =
∑
i,j

αiβj.

This turns H∗(X;R) into a ring with unit, i.e., multiplication is associative,
there is a multiplicatively neutral element 1, and addition and multiplication
satisfy the distributive law.

We consider the cohomological degree n in Hn(X;R) as a grading of H∗(X;R).
If an element α is in Hp(X;R) we call p the degree of α and denote it also by |α|.

Since multiplication respects this grading in the sense that it defines a map

Hp(X;R)×Hq(X;R)→ Hp+q(X,A;R),
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we call H∗(X;R) a graded ring.

Moreover, as we have shown with a lot of effort last time, the multiplication is
commutative up to a sign which depends on the grading:

αβ = (−1)|α||β|βα.

Hence H∗(X;R) a graded commutative ring.

Moreover, there is an obvious scalar multiplication by elements in R which
turns H∗(X;R) into a graded R-algebra.

Finally, if f : X → Y is a continuous map, then the induced map on cohomology

f ∗ : H∗(Y ;R)→ H∗(X;R)

is a homomorphism of graded R-algebras.

Now we should determine some ring structures and see what they can tell us.

As a first, though disappointing, example, let us note that the product in the
cohomology of a sphere Sn (with n ≥ 1) is boring, since H0(Sn;R) is just R and
the product on Hn(Sn;R) is trivial for reasons of degrees:

Hn(Sn;R)×Hn(Sn;R)→ H2n(Sn;R) = 0.

So let us move on to more interesting cases.

Cohomology ring of the torus

Even though the cohomology ring of S1 was boring, the cohomology ring of
the product T = S1 × S1, i.e., of the torus, is not. Let us assume R = Z.

We computed the homology of T using its structure as a cell complex with one
0-cell, two 1-cells, and one 2-cell.

The cellular chain complex has the form

0→ Z d2−→ Z⊕ Z d1−→ Z→ 0

where d1(a,b) = a+ b and d2(s) = (s,− s) (the attaching map of the 2-cell to the
two 1-cells was aba−1b−1). This yields the homology of T .
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We can then apply the UCT to deduce that the singular cohomology of T is
given by

H i(T ;Z) =


Z if i = 0

Z⊕ Z if i = 1

Z if i = 2

and H i(T ;Z) = 0 for i > 2.

Let α and β be generators of H1(T ;Z). We could obtain them for example as
the dual of the basis {a,b} of H1(T ;Z) and the isomorphism of the UCT:

H1(T ;Z) = Hom(H1(T ;Z),Z).

Being a dual basis means, in particular,

α(a) = 〈α,a〉 = 1, α(b) = 〈α,b〉 = 0, β(a) = 〈β,b〉 = 0, β(b) = 〈β,b〉 = 1

where the funny brackets denote the Kronecker pairing we had defined earlier.

Since multiplication is graded commutative, we have

2α2 = 0 = 2β2.

Since Z is torsion-free, this implies

α2 = 0 = β2.

Now we would like to understand the product αβ. Therefore, we need to
evaluate it on a generator of H2(T ;Z). Such a generator is given by the 2-chain
σ − τ , where σ and τ are the 2-simplices indicated in the picture (that this is a
generator needs to be checked; we just accept this for the moment):
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It is a cycle, since

∂(σ − τ) = ∂(σ)− ∂(τ) = b− d+ a− (a− d+ b) = 0

where d denotes the diagonal.

Now we can calculate

(α ∪ β)(σ − τ) = α(σ|[e0,e1])β(σ|[e1,e2])− α(τ|[e0,e1])β(τ|[e1,e2])

= α(a)β(b)− α(b)β(a)

= 1− 0 = 1.

Thus, since H2(T ;Z) = Hom(H2(T ;Z),Z) by the UCT, we see that αβ is a
generator of H2(T ;Z).

Hence we can conclude that the cohomology ring of the torus is the ring with
generators α and β and relations

H∗(T ;Z) = Z{α,β}/〈α2 = 0 = β2, αβ = −βα〉.

Another way to formulate this is to say that H∗(T ;Z) is the exterior algebra
over Z with generators α and β:

H∗(T ;Z) = ΛZ[α,β].

In gerenal, the exterior algebra ΛR[α1, . . . ,αn] over a commuative ring R with
unit is defined as the free R-module with generators αi1 · · ·αik for i1 < · · · < ik
with associative and distributive multiplication defined by the rules

αiαj = −αjαi if i 6= j, and α2
i = 0.

Setting Λ0 = R, ΛR[α1, . . . ,αn] beceomes a graded commutative ring with odd
degrees for the αis and unit 1 ∈ R.

For the n-torus T n = S1 × · · · × S1, defined as the n-fold product of S1, we
then get

H∗(T n;Z) = ΛZ[α1, . . . ,αn].

Cohomology of projective spaces

The cohomology rings of projective spaces are truncated polynomial algebras:
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Cohomology rings of RPn and CPn

• For every n ≥ 1 and F2-coefficients, we have an isomorphism of graded
rings

H∗(RPn;F2) ∼= F2[x]/(xn+1), and H∗(RP∞;F2) ∼= F2[x]

with |x| = 1.
• For every n ≥ 1 and integral coefficients, we have an isomorphism of
graded rings

H∗(CPn;Z) ∼= Z[y]/(yn+1), and H∗(CP∞;Z) ∼= Z[y]

with |y| = 2.

The proof of this result requires some efforts. We will postpone its proof and
rather see some consequences of it.

Cup products detect more

Consider the wedge of spheres S2∨S4. We know that its homology is given by

H̃∗(S
2 ∨ S4;Z) = H̃∗(S

2;Z)⊕ H̃∗(S4;Z).

In other words,

Hi(S
2 ∨ S4;Z) =

{
Z if i = 0, 2, 4

0 else.

Hence the homologies of CP2 and S2 ∨ S4 are the same. Since all the groups
are free, this also implies that the cohomology groups of the two spaces are the
same. Thus, neither homology nor cohomology groups can distinguish between
these two spaces.

The cup product, however, can.

For, we know that the square of a generator inHn(Sn;Z) is zero, sinceH2n(Sn;Z) =
0. Thus

H∗(Sn;Z) = Z[t]/(t2 = 0) with |t| = n,

and hence we have a generator s ∈ H2(S2 ∨ S4;Z) with s2 = 0 and a generator
t ∈ H2(S2 ∨ S4;Z) with t2 = 0.

If there was an isomorphism of graded Z-algebras

H̃∗(CP2;Z) ∼= H̃∗(S2 ∨ S4;Z)
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it would have to send the generator y ∈ H2(CP2;Z) to the generator s ∈ H2(S2∨
S4;Z). But y2 6= 0 in H4(CP2;Z), whereas s2 = 0 in H4(S2 ∨ S4;Z).

Thus, such an isomorphism of graded rings cannot exist.

Thus, the cup product structures show that there does not exist a homotopy
equivalence between CP2 and S2 ∨ S4, something our previous invariants could
not prove.

Hopf maps

As an important application of what we just learned, we consider the following
situation.

Many problems can be reduced to checking whether a map is null-homotopic,
i.e., homotopic to a constant map, or not.

Given a map f : X → Y , we can form the mapping cone Cf = CX∪f Y (which
we introduced in the exercises). It is the pushout of the diagram

X × {1}

f

��

// CX

��

Y
i

// Cf .

If f is homotopic to a constant map, then the diagram is equivalent to the diagram

pt

��

// CX/(X × {1})

��

Y
i

// SX ∨ Y
where we use that CX/(X × {1}) is the suspension SX of X.

Thus, if f is null-homotopic, then there is a homotopy equivalence

Cf
'−→ SX ∨ Y.

Let us look at an example. Let

η : S3 → CP1 ≈ S2, x 7→ [Cx] = {λx ∈ C2 : λ ∈ C}

be the complex Hopf map which sends a point x ∈ S3 ⊂ C2 to the complex
line in C2 which passes through x.

This is exactly the map which attaches the 4-cell to CP1 ≈ S2 in the cell
structure of CP2. The mapping cone Cη of η is CP2, since the cone of S3 is just
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D4:

CS3 = (S3 × [0,1])/(X × {0}) ≈ D4

and hence

Cη = CS3 ∪η S2 ≈ D4 ∪η S2 ≈ D4 ∪η CP1 ≈ CP2.

Now we use that we showed in the exercises that the suspension of S3 is home-
omorphic to S4. Thus, if η was null-homotopic, then the argument above would
imply

CP2 ≈ Cη
'−→ S2 ∨ S4.

But we just showed that such a homotopy equivalence cannot exits. Thus, η
is not null-homotopic.

More Hopf maps

Note that there is also a quaternionic Hopf map

ν : S7 → S4,

and an octonionic Hopf map

σ : S15 → S8.

They are constructed in the same way as η by replacing C with the quater-
nions H and the octonions O, respectively. There are corresponding projec-
tive spaces HPn and OPn with HP1 ≈ S4 and OP1 ≈ S8, and polynomial
rings as cohomology rings:

H∗(HP2;Z) = Z[z]/(z3), |z| = 4, and H∗(OP2;Z) = Z[w]/(w3), |w| = 8.

The homotopy classes of η, ν and σ

[η] ∈ π3(S2), [ν] ∈ π7(S4), [σ] ∈ π15(S8)

play a crucial role in the stable homotopy category.

Is there a multiplication on Rn?

For the next application, we are going to assume one more result, nemaly that
the cohomology ring of the product of RPn × RPn is given

H∗(RPn × RPn;Z/2) ∼= F2[α1,α2](αn+1
1 ,αn+1

2 ).

This implies the following algebraic fact:
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Theorem: Multiplication on Rn

Assume there is a R-bilinear map

µ : Rn × Rn → Rn

such that µ(x,y) = 0 implies x = 0 or y = 0.
Then n must be a power of 2.

In fact, n must be 1, 2, 4 or 8. In all these dimensions we have such multpli-
cations by identifying

R2 ∼= C, R4 ∼= H, R8 ∼= O.

But to show that there are no other such algebra structures on Rn is a much
harder task. The only known proofs of this fact are using algebraic topology!
In fact, for showing this we need to study the famous Hopf Invariant One-
Problem. This is beyond the scope of this lecture. So let us be modest and just
prove the result stated above.

Proof: • Since µ is linear in both variables, it induces a continuous map

µ̄ : RPn−1 × RPn−1 → RPn−1.

Then µ̄ induces a homomorphism of cohomology rings which has the form

µ̄∗ : F2[α]/(αn)→ F2[α1,α2](αn1 ,α
n
2 ).

• Since µ does not have a zero-divisor, the restriction of µ to Rn×{a} for any
a ∈ Rn is an isomorphism. Hence the restriction of µ̄ to RPn−1 × {y} for any
point y ∈ RPn−1 is a homeomorphism.

This implies that the composite

RPn−1 → RPn−1 × {y} ↪→ RPn−1 × RPn−1 µ̄−→ RPn−1

is a homeomorphism as well. Hence the induced homomorphism of cohomology
rings must send α to α.

Repeating this argument for {y} × RPn−1, we see that the image of α under
µ̄∗ must be

µ̄∗(α) = α1 + α2.

Since both rings are polynomial algebras, µ̄∗ is completely determined by this
identity.



10

• Since αn = 0, we must have µ̄∗(α)n = 0, i.e.,

(α1 + α2)n =
∑
k

(
n

k

)
αk1α

n−k
2 = 0.

The sum on the right-hand side can only be zero if all the coefficients of the
monomials αk1α

n−k
2 vanish for 0 < k < n. Since we are working over F2, this

means that all the numbers
(
n
k

)
for 0 < k < n must be even.

To prove this fact is equivalent to proving the following claim about the poly-
nomial ring F2[x]:

• Claim: In F2[x], we have

(1 + x)n = 1 + xn ⇐⇒ n is a power of 2.

First, if n is a power of 2, then the eqation (a+ b)2 = a2 + b2 modulo 2 shows
the if part:

(1 + x)2r = (1 + x2)2r−1

= (1 + x22)2r−2

= · · · = 1 + x2r in F2[x].

For the other direction, write n as

n = 2rm with m odd and m > 1.

Then

(1 + x)n = (1 + x)2rm = (1 + x2r)m = 1 +mx2r + . . .+ xn 6= 1 + xn in F2[x]

since m is odd. QED
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