
MA3403 Algebraic Topology
Lecturer: Gereon Quick

Lecture 22

22. Poincaré duality and intersection form

We are going to meet an important class of topological spaces and study one of
their fundamental cohomological properties. This lecture will be short of proofs,
but rather aims to see an important theorem and structures at work.

Manifolds

We start with defining an important class of spaces.

Definition: Topological manifolds

A n-dimensional topological manifold is a Hausdorff space in which each
point has an open neighborhood which is homeomorphic to Rn.

In this lecture, the word manifold will always mean a topological manifold.

You know many examples of manifolds, most notably Rn itself, any open sub-
set of Rn, n-spheres Sn, tori, Klein bottle, projective spaces. Even though the
definition does not refer to this information, any manifold M can be embedded
in some RN for some large N (which depends on M).

Though it is a crucial point that N and n can and usually are different. For
example, S2 is a subset of R3, but each point on S2 has a neighborhood which
looks like a plane, i.e., is homeomorphic to R2.
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There are many reasons why manifolds are important. One of them is that
we understand and can study them locally, while they can be very complicated
globally.

Poincaré duality

In this lecture, all homology and cohomology groups will be with F2-coefficients.
Recall that there is a pairing

Hk(X;F2)⊗Hk(X;F2)
〈−,−〉−−−→ F2

defined by evaluating a cocycle ϕ on a cycle σ which is an element in F2.

We are going to study the consequences of the following famous fact:

Theorem: Poincaré duality mod 2

Let M be a compact topological manifold of dimension n. Then there
exists a unique class [M ] ∈ Hn(M ;F2), called the fundamental class of
M , such that, for every p ≥ 0, the pairing

Hp(M ;F2)⊗Hn−p(M ;F2)
∪−→ Hn(M ;F2)

〈−,[M ]〉−−−−→ F2

is perfect.

That the pairing is perfect means that the adjoint map

Hp(X;F2)
〈a∪−,[M ]〉−−−−−−→ Hom(Hn−p(X;F2),F2), a 7→ 〈a ∪ −,[M ]〉
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is an isomorphism.

Here are some first consequences of this theorem:

• Since cohomology vanishes in negative dimensions, we must haveHp(X;F2) =
0 for p > n as well.
• Since M is assumed to be compact, we know that π0(M), the set of

connected components of M , is finite. Moreover, we once showed that
H0(M ;F2) equals Map(π0(M),F2). Hence we get

Hn(M ;F2) = Hom(H0(M ;F2),F2) = Hom(Map(π0(M),F2),F2) = F2[π0(M)].

• A vector space admitting a perfect pairing is finite-dimensional. Hence
Hp(M ;F2) is finite-dimensional for all p.

There is a version of the Universal Coefficient Theorem with F2-coefficients.
Since F2 is a field, it implies that there is an isomorphism

Hom(Hn−p(M ;F2),F2) ∼= Hn−p(M ;F2).

(Note that we formulated the UCT with the roles of homology and cohomology
reversed. But, since the map arose from the Kronecker pairing, we can also
produce the claimed version of the UCT. As mentioned in the intro to this lecture,
we rush through some points for the sake of telling a good story.)

Composition with the above pairing yields an isomorphism

Hp(X;F2)

∼=

22

∼=
// Hom(Hn−p(M ;F2),F2) Hn−p(M ;F2).

∼=
oo

Definition: Poincaré duals

Homology and cohomology corresponding to each other under the dotted
isomorphism are said to be Poincaré dual to each other.
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Intersection pairing

Combining this isomorphism for different dimensions, we can write the cup
product pairing in cohomology as a pairing in homology (where we drop the
coefficients which are still F2)

Hp(M)⊗Hq(M)

∼=
��

t
// Hp+q−n(M)

∼=
��

Hn−p(M)⊗Hn−q(M)
∪
// H2n−p−q(M).

The top map is called the intersection pairing in homology.

Here is how we should think about it:

• Let α ∈ Hp(M) and β ∈ Hq(M) be homology classes.

• Represent them, if possible, as the image of fundamental classes of sub-
manifolds of M . That means that there are submanifolds Y and Z in M
of dimensions p and q, respectively, such that

α = i∗[Y ] and β = j∗[Z]

where i∗ : Hp(Y ) → Hp(M) and j∗ : Hq(Z) → Hq(M) are the homomor-
phisms induced by the inclusions i : Y ↪→M and j : Z ↪→M .

• Move them a bit if necessary to make them intersect transversally.

• Then their intersection is a submanifold of dimension p + q − n and its
image will represent the homology class α t β.

Let us look at an example:

Example: Intersection on a torus

Let M = T 2 = S1 × S1 be the two-dimensional torus. We know

H1(M) = F2〈a,b〉
with a2 = 0 = b2, and H2(M) is generated by ab = ba.
The Poincaré duals α and β of a and b are represented by cycles which
wrap around one or the other factor circle of M .
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The cycles α and β can be made to intersect in a single point. This reflects
the equation

〈a ∪ b, [M ]〉 = 1.

But this equation also tells us that α and β can only be moved in such a
way that they intersect in an odd number of points.
The fact that a2 = 0 reflects that the fact that its Poincaré dual α can be
moved so as not to intersect itself.

Intersection form

Let us look at a particular case of Poincaré duality. Let us assume that M
is even-dimensional, say of dimension n = 2p. Then Poincaré duality implies
that we have a symmetric bilinear form on the F2-vector space Hp(M):

Hp(M)⊗F2 H
p(M)→ H2p(M) ∼= F2.

As we just observed, this can be interpetreted as a bilinear form on homology
Hp(M). Evaluating this form can be wiewed as describing (modulo 2) the number
of points where two p-cycles intersect, after they have put moved in general
position, i,.e., a position where they intersect transversally.

Definition: Intersection form

This form Hp(M)⊗Hp(M)→ F2 is called intersection form and will be
denoted

α · β := 〈a ∪ b, [M ]〉
where a and b are Poincaré dual to α and β, respectively.
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Let us consider two examples:

• For the sphere S2, the first homology is trivial, and so is the intersection
form on S2.
• In the example of the torus, the intersection form can be described in

terms of the basis α and β by the matrix (since any such form looks like
(v,w) 7→ vTHw)

H =

(
0 1
1 0

)
.

Such a form is called hyperbolic.

Apparently, it would good to know a bit more about such forms. We are
going to review what we need to know about them now and then get back to the
application in topology in the next lecture.

A digression on symmetric bilinear forms

We need to have a brief look at such forms.

So let V be a finite-dimensional vector space over F2 together with a nonde-
generate symmetric bilinear form. Such a form restricts to any subspace W of V ,
but the restricted form may be degenerate. But any subspace has an orthogonal
complement

W⊥ = {v ∈ V : v · w = 0 for all w ∈ W}.

Then we have the following lemma:

Lemma

The restriction of a nondegenerate symmetric bilinear form on V to a sub-
space W is nondegenerate if and only if W ∩W⊥ = 0.
In this case, the restriction to W⊥ is also nondegenerate and the splitting

V ∼= W ⊕W⊥

respects the forms.

We can use this lemma to inductively decompose all finite-dimensional sym-
metric bilinear forms:

• If there is a vector v ∈ V with v · v = 1, then it generates a nondegen-
erate subspace, i.e., a subspace on which the restriction of the form is
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nondegenerate, and

V = 〈v〉 ⊕ 〈v〉⊥

where 〈v〉 denotes the subspace generated by v.

• Continue to split off one-dimensional subspaces until we reach a nonde-
generate symmetric bilinear form such that v · v = 0 for all vectors.

• Unless we ended up with zero space, we can pick a nonzero vector v. Since
the form is nondegenerate, there must be a vector w such that v · w = 1.

• The two vectors v and w generate a hyperbolic subspace, i.e., one on which
the form is represented by the matrix

H =

(
0 1
1 0

)
.

• Split this space off, and continue the process.

This procedure shows:

Proposition: Classification of nondegenerate forms

Any finite-dimensional nondegenerate symmetric bilinear form over F2 splits
as an orthogonal sum of forms with matrices

I = (1) and H =

(
0 1
1 0

)
.

We are going to continue the study of forms and get bakc to the topology in
the next lecture.
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