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Lecture 24

24. More on Poincaré duality

We continue our discussion of Poincaré duality. First we see two applications
of the theorem with F2 coefficients. Then we will discuss what we need to do
for other coefficients. This will lead to an important concept, orientations of
manifolds, and an important algebraic structure, the cap product.

Dualities reflect fundamental properties

Poincaré duality is extremely interesting, since it reflects a deep symmetry
in the homology and cohomology groups on manifolds. For, the cohomology
in dimension p determines the cohomology in dimension n−p. This symme-
try has many consequences which make the study of manifolds particularly
interesting.
Duality theorems arise in many areas of mathematics and always reflect
deep and interesting structures.

We start with an application of Poincaré duality modulo 2.

Applications of Poincaré duality with F2-coefficients

Recall the important theorem:

Theorem: Poincaré duality mod 2

Let M be a connected compact manifold of dimension n. Then there
exists a unique class [M ] ∈ Hn(M ;F2), called the fundamental class of
M , such that, for every p ≥ 0, the pairing

Hp(M ;F2)⊗Hn−p(M ;F2)
∪−→ Hn(M ;F2)

〈−,[M ]〉−−−−→ F2

is perfect.

Since real projective space is a compact connected n-dimensional manifold,
Poincaré duality applies. And, in fact, we can use this result to deduce the
algebra structure on the cohomology of real projective space:

1



2

Corollary: Cohomology of RPn

Let x be the nonzero element in H1(RPn;F2). Then xk is the nonzero
element of Hk(RPn;F2) for k = 2, . . . ,n.
Thus H∗(RPn;F2) is the truncated polynomial algebra

H∗(RPn;F2) ∼= F2[x]/(xn+1)

generated by x in degree 1 and truncated by setting xn+1 = 0.
Moreover, H∗(RP∞;F2) is a polynomial algebra

H∗(RPn;F2) ∼= F2[x]

generated by x in degree 1.

Proof: The proof is by induction on n.

By the construction of the cell structure on RPn, we know that the inclusion
jk : RPk ↪→ RPk+1 is a map of cell complexes which induces an isomorphism

H i(RPk;F2)
∼=−→ H i(RPk+1;F2) for all i = 0, . . . ,k,

which sends the nonzero element x ∈ H1(RPk;F2) to the nonzero element in
H1(RPk+1;F2) which we therefore also denote by x.

Hence, assuming xk is the nonzero element in Hk(RPk;F2), it suffices to show
that x ∪ xk is nonzero in Hk+1(RPk+1;F2).

By Poincaré duality, the pairing

H1(RPk+1;F2)⊗Hk(RPk+1;F2)
∪−→ Hk+1(RPk+1;F2)

〈−,[RPk+1]〉−−−−−−−→ F2

is perfect. Since x and xk are nonzero by assumption, this implies x ∪ xk = xk+1

is nonzero as well.

For RPn, we know that H i(RPn F2) = 0 for i > n, since there are no cells in
dimensions bigger than n. Thus xn+1 = 0.

For RP∞ we just continue the induction process. QED

As an application of this calculation, we are going to prove another famous
theorem, the Borsuk-Ulam Theorem.
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Lemma

Let f : RPm → RPn be a continuous map which induces a nontrival map

f∗ 6= 0: H1(RPm;F2)→ H1(RPn;F2)

Then m ≤ n.

Proof: Since H1(X;F2) ∼= Hom(H1(X;F2)), the assumption implies that the
induced map in cohomology

f ∗ : H1(RPn;F2)→ H1(RPm;F2)

is nontrivial as well.

Let x 6= 0 be the nonzero element in H1(RPn;F2). Then f ∗(x) 6= 0 is nonzero
in H1(RPm;F2). By the calculation of the H∗(RPm;F2), we have

0 6= (f ∗(x))m = f ∗(xm).

Thus, xm 6= 0 in Hm(RPn;F2) which implies m ≤ n. QED

Lemma: Paths between antipodal points

Let p ∈ Sn and let σ : ∆1 → Sn be a 1-simplex on Sn which connects p and
its antipodal point −p in Sn, i.e., σ(e0) = p and σ(e1) = −p. Let

π : Sn → RPn

be the quotient map.
Then π∗(σ) = π◦σ is a cycle on RPn which represents a nonzero element
in H1(RPn;F2).

Proof: First, that π∗(σ) is a cycle on RPn just follows from the fact

[π(σ(e0))] = [−π(σ(e0))] = [π(σ(e1))] in RPn.

It remains to show that it is not a boundary.

Recall that there is a cell structure on Sn with skeleta

S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn.

By symmetry, we can assume that p and −p are the points of S0.

• For n = 1, we have a homeomorphism RP1 ≈ S1 (for example, one could
use the stereographic projection). Since σ connects p and −p on S1, there is an
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integer k such that σ walks around S1 (k + 1/2)-many times. Thus π∗(σ) walks
around RP1 (2k + 1)-many times, i.e., an odd number of times.

Now recall that we showed

Z
∼=−→ H1(S1;Z), m 7→ (z 7→ zm)

where we use the identification π(S1) = H1(S1;Z) that we showed in the ex-
ercises. This implies that with F2-coefficients, even numbers correspond to 0 in
H1(RP1;F2) and odd numbers correspond to the nonzero element in H1(RP1;F2).

Thus, the image of π∗(σ) in H1(RP1;F2) is nonzero.

• For n > 1, we first choose a path τ on S1 ⊂ Sn which connects p and −p on
S1. By the previous case, we know [π∗(τ)] 6= 0 in H1(RP1;F2). The inlcusion
map RP1 ↪→ RPn induces an isomorphism

H1(RP1;F2)
∼=−→ H1(RPn;F2).

Hence [π∗(τ)] 6= 0 in H1(RPn;F2) as well.

But for n > 1, the difference σ − τ is a boundary, since it is homotopic to a
constant map. This implies

[π∗(σ)] = [π∗(τ)] 6= 0 in H1(RPn;F2).

QED

Lemma: No antipodal maps

For any n, there is no continuous map f : Sn+1 → Sn with

f(−p) = −f(p) for all p ∈ Sn+1.

Proof: Assume there was such a map f . Since f(−p) = f(−p) for all p, f
induces a map

f̄ : RPn+1 → RPn

which fits into a commutative diagram

Sn+1

πn+1

��

f
// Sn

πn

��

RPn+1

f̄

// RPn.



5

Now we take take a 1-simplex σ which connects two antipodal points on Sn+1.
Its image f∗(σ) = f ◦ σ is then a 1-simplex which connects two antipodal points
on Sn, since f(−p) = f(−p).

By the previous lemma, πn∗ (f∗(σ)) 6= 0 in H1(RPn;F2). Thus

f̄∗(π
n+1
∗ (σ)) = πn∗ (f∗(σ)) 6= 0.

In other words,

f̄∗ 6= 0: H1(RPn+1;F2)→ H1(RPn;F2)

is nontrivial. By the other lemma, this is not possible. Hence f cannot exist.
QED

The Borsuk-Ulam Theorem

Let g : Sn → Rn be a continuous map. Then there is a point p ∈ Sn with

g(p) = g(−p).

Proof: If there is no such point, we can define a continuous map

f : Sn → Sn−1, p 7→ g(p)− g(−p)
|g(p)− g(−p)|

.

But this map satisfies

f(−p) = −f(p).

This contradicts the previous lemma. QED
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Orientation and fundamental classes

We now leave the world of F2-coefficients and contemplate on what we need
for a Poincaré duality theorem with other coefficients. Since we will only sketch
the main ideas anyway, we will just look at Z-coefficients.

We start with the following observation on the homology groups of a manifold
at a point:

Lemma: Local homology on manifolds

Let M be an n-dimensional topological manifold. For any point x ∈ M ,
there is an isomorphism

Hn(M,M − {x};Z) ∼= Z.
and Hi(M,M − {x};R) = 0 for all i 6= n.

Proof: Since M is a manifold, there is an open neighborhood U around x in
M such that U ∼= Rn. We set Z = M − U and apply excision to get

Hi(M,M − {x};Z) ∼= Hi(M − Z,(M − {x})− Z);Z) (by excision)

= Hi(U,U − {x};Z)
∼= Hi(Rn,Rn − {0};Z)
∼= Hi−1(Rn − {0};Z) (by homotopy invariance and long ex. seq.)

∼= Hi−1(Sn−1;Z) (by homotopy invariance).

This implies

Hi(M,M − {x};Z) ∼=

{
Z if i = n

0 else.

QED

Local orientation

The group Hn(M,M − {x};Z) is often called the local homology of M
at x. It is an infinite cyclic group and therefore has two generators.
A choice of a generator µx ∈ Hn(M,M −{x};Z) is a local orientation of
M at x.
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For every point x ∈ M , we can choose such a generator. Note that such a
choice was not necessary in F2, since there is only one generator. That makes
F2-coefficients quite special.

The natural question is how all these choices are related. In other words, is
it possible to choose these generators in a compatible way?

More precisely, let x and y be two points in M which both lie in some subset
U ⊂M . The inclusions ix : {x} ↪→M and iy : {y} ↪→M induce maps

Hn(M,M − {x};Z) Hn(M,M − U ;Z)
ix∗
oo

iy∗
// Hn(M,M − {y};Z).

A class µU ∈ Hn(M,M−U ;Z) which maps to generators in Hn(M,M−{x};Z)
and Hn(M,M−{y};Z). Such an µU would define local orientations µx := ix∗(µU)
and µy := iy∗(µU) at x and y, respectively. We call such an element µU a funda-
mental class at U .

Around every point in M there is a little neighborhood U with a fundamental
class at U . The crucial question is: how large can we choose such a U? Ideally,
we would like to be able to choose U = M such that Hn(M,M − U) = Hn(M).

Unfortunately, this is not always possible. This leads to an important concept:

Orientations

Let M be a compact connected n-dimensional manifold.
• An orientation of M is a function x 7→ µx, where µx ∈ Hn(M,M−{x};Z)
is a generator, which satisfies the following condition:
At any point x ∈ M , there is a neighborhood U around x and an element
µU ∈ Hn(M,M − U ;Z) such that iy∗(µU) = µy for all y ∈ U .
• If such an orientation exists, we say that M is orientable.

If M is orientable, then there are exactly two orientations. If M is ori-
entable, and we have chosen an orientation, then we say that M is oriented.

We can reformulate this in terms of a particular class in homology, the funda-
mental class. The following statement is both a definition and proposition. We
skip the proof, since we only have time for a rough sketch of the story.
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Fundamental classes and orientability

Let M be a compact connected n-dimensional manifold.
• A fundamental class of M is an element µ ∈ Hn(M ;Z) such that, for
every point x ∈M , the image of µ under the map

Hn(M ;Z)→ Hn(M,M − {x};Z)

induced by the inclusion (M,∅) ↪→M,M − {x}) is a generator.
• M is orientable if and only if M has a fundamental class.
• M is orientable if and only if Hn(M ;Z) = Z.

For example, RP2n is not orientable, sinceH2n(RP2n;Z) = 0. Whereas RP2n+1

is orientable with H2n+1(RP2n+1;Z) = Z.

Spheres and tori are orientable. The Klein bottle is not orientable.

The cap product

There is another type of product that has elements in both cohomology and
homology and has a homology class as output. Actually, there are several other
such products. But that is a story for another day.

Cap products are defined for arbitrary spaces. So we leave the world of man-
ifolds for a moment and get back to it afterwards. Again we only discuss Z-
coefficients, but everything works for any ring R as coefficients.

Definition: Cap product

Let X be any space. The cap product is defined to be the Z-bilinear map

Sq(X)× Sp(X)
∩−→ Sp−q(X)

defined by sending a q-cochain ϕ ∈ Sq(X) and a p-simplex σ : ∆p → X to
the p− q-chain

ϕ ∩ σ := ϕ(σ|[e0,...,eq ])σ|[eq ,...,ep].

If p < q, then the cap product is defined to be 0.

After checking the relation

∂(ϕ ∩ σ) = ϕ ∩ (∂σ)
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we see that the cap product descends to a Z-linear map on cohomology and
homology

Hq(X)⊗Hp(X)
∩−→ Hp−q(X).

Given a continuous map f : X → Y , there is the following formula which
expresses the naturality of the cap product:

ϕ ∩ f∗(σ) = f∗(f
∗ϕ ∩ σ).

The cap product is important for us, since (one form of) Poincaré duality can
be formulated by saying that the cap product with the fundamental class is an
isomorphism:

Poincaré duality

Let M be a compact n-dimensional oriented manifold. Let [M ] ∈ Hn(M ;Z)
be its fundamental class. Then taking the cap product with [M ] yields an
isomorphism

D : Hp(M ;Z)
∼=−→ Hn−p(M ;Z), ϕ 7→ ϕ ∩ [M ].

Note that there are many different ways to formulate Poincaré duality. In
particular, there is also the stronger statement in terms of perfect pairings on
cohomolgy groups that we have seen in the mod 2-case.

The idea of the proof of this theorem is to study the case of open subsets of
Rn first. Then we use that every point in M has an open neighborhood which is
homeomorphic to an open subset in Rn. Since M is compact, we only need to take
finitely many such open neighborhoods to cover M . The Mayer-Vietoris sequence
then allows to patch the overlapping open subsets together. Unfortunately, there
are some technical difficulties to take care of along the way, e.g., that certain
diagrams actually commute.
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