
Math 231b
Lecture 04

G. Quick

4. Lecture 4: Constructing new bundles out of old

We already have a bunch of examples of bundles at hand. But we’d like to
be able to construct new bundles out of known ones. We will see some basic
constructions for new bundles today.

4.1. Restricting a bundle to a subset of the base space. Let ξ be a vector
bundle with projection π : E → B and let U be a subset of B. Setting E|U =
π−1(U), and letting

π|U : E|U = π−1(U)→ U

be the restriction of π to E|U , one obtains a new vector bundle which will be
denoted by ξ|U , and called the restriction of ξ to U .

Each fiber Eb(ξ|U) is just equal to the corresponding fiber Eb(ξ), and is given
the same vector space structure.

4.2. Induced or pullback bundles. Let ξ be a vector bundle over B and let
B1 be an arbitrary topological space. Given a continuous map f : B1 → B one
can construct the induced bundle or pullback bundle f ∗ξ over B1 as follows. The
total space E1 of f ∗ξ is the subset E1 ⊂ B1 × E consisting of all pairs (b,e) such
that f(b) = π(e), or in a formula

E1 = {(b,e) ∈ B1 × E| f(b) = π(e)}.
The projection map π1 : E1 → B1 is defined by π1(b,e) = b. Thus one has a
commutative diagram

E1

f̂ //

π1

��

E

π

��
B1

f // B

where f̂(b,e) = e. The vector space structure in π−1(b) is defined by

t1(b,e1) + t2(b,e2) = (b, t1e1 + t2e2).

Thus f̂ carries the vector space Eb(f
∗(ξ) isomorphically onto the vector space

Ef(b)(ξ).
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It remains to specify the local trivializations of f ∗ξ. If (U, h) is a local trivial-
ization for ξ, we set U1 = f−1(U) and define

h1 : U1 × Rn → π−1
1 (U1) by h1(b,x) = (b, h(f(b), x)).

Then (U1, h1) is a local trivialization of f ∗ξ.

Example 4.1. If ξ is trivial, then f ∗ξ is trivial. For if E = B×Rn then the total
space E1 of f ∗(ξ) consists of the triples (b1, b, x) in B1 × B × Rn with b = f(b1).
Hence b does not induce any restriction and E1 is just the product B1 × Rn.

Remark 4.2. If f : B1 → B is an inclusion map, then there is an isomorphism

E|B1
∼= f ∗(E)

given by sending e ∈ E to the point (π(e),e).

We still have not yet said what a map between bundles over different base
spaces should be. The above construction inspires the following definition.

Definition 4.3. Let ξ and η be two vector bundles. A bundle map from η to ξ
is a continuous map

g : E(η)→ E(ξ)

which carries each vector space Eb(η) isomorphically onto one of the vector spaces
Eb′(ξ) for some b′ ∈ B(ξ).

Remark 4.4. Setting ḡ(b) = b′, we obtain a map

ḡ : B(η)→ B(ξ).

This map is continuous. For ḡ is completely determined by g, since the projection
map πη of η is surjective:

E(η)
g //

πη

��

E(ξ)

πξ

��
B(η)

ḡ // B(ξ).

Now since the question is local, we can choose a local trivialization (U,h) of ξ.
Then it suffices to prove the assertion for a map of trivial bundles and a diagram

V × Rn
g //

πη

��

U × Rn

πξ

��
V

ḡ // U.

But now it is clear that ḡ is continuous since g is continuous and ḡ(b) is just the
first coordinate of g(b,x).
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Lemma 4.5. If g : E(η)→ E(ξ) is a bundle map, and if ḡ : B(η)→ B(ξ) is the
corresponding map of base spaces, then η is isomorphic to the induced bundle ḡ∗ξ.

Proof. Define

h : E(η)→ E(ḡ∗ξ) by h(e) = (π(e), g(e))

where π denotes the projection map of η. Since h is continuous and maps each
fiber Eb(η) isomorphically onto the corresponding fiber Eb(ḡ

∗ξ), it follows from
the lemma of the previous lecture that h is an isomorphism. �

The previous lemma shows the following uniqueness statement.

Proposition 4.6. Given a map f : B1 → B and a vector bundle ξ over B, then
f ∗ξ is up to isomorphism the unique vector bundle ξ′ over B1 which is equipped
with a map to ξ which takes the fiber of ξ′ over b isomorphically onto the fiber of
ξ over f(b) for each b ∈ B1.

Moreover, the pullback construction is natural in the following sense: If we
have another continuous map g : B2 → B1, then there is a natural isomorphism

g∗f ∗(ξ) ∼= (f ◦ g)∗(ξ)

given by sending each point of the form

(b, e) to the point (b, g(b), e), where b ∈ B2, e ∈ E.

Conclusion 4.7. For a space B let Vectn(B) denote the set of isomorphism
classes of n-dimensional vector bundles over B. Then a continuous map

f : B1 → B

induces a map

f ∗ : Vectn(B)→ Vectn(B1) sending ξ to f ∗ξ.

4.3. Cartesian products. Given two vector bundles ξ1, ξ2 with projection maps
πi : Ei → Bi, i = 1, 2, the Cartesian product ξ1 × ξ2 is defined to be the bundle
with projection map

π1 × π2 : E1 × E2 → B1 ×B2

where each fiber

(π1 × π2)−1(b1, b2) = Eb1(ξ1)× Eb2(ξ2)

is given the obvious vector space structure.
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4.4. Whitney sums. Now let ξ1, ξ2 be two vector bundles over the same space
B. Let

d : B → B ×B
denote the diagonal embedding. The bundle d∗(ξ1 × ξ2) over B is called the
Whitney sum of ξ1 and ξ2, and will be denoted ξ1 ⊕ ξ2. Each fiber Eb(ξ1 ⊕ ξ2) is
canonically isomorphic to the direct sum of the fibers Eb(ξ1)⊕ Eb(ξ2).

Definition 4.8. Consider two vector bundles ξ and η over the same base space
B with E(ξ) ⊂ E(η). Then ξ is a sub-bundle of η, written ξ ⊂ η, if each fiber
Eb(ξ) is a sub-vector space of the corresponding fiber Eb(η).

Lemma 4.9. Let ξ1 and ξ2 be sub-bundles of η such that each vector space Eb(η) is
equal to the direct sum of the sub-spaces Eb(ξ1) and Eb(ξ2). Then η is isomorphic
to the Whitney sum ξ1 ⊕ ξ2.

Proof. Define a map

f : E(ξ1 ⊕ ξ2)→ E(ξ) by f(b, e1, e2) = e1 + e2.

The lemma of the previous lecture shows that f is an isomorphism of bundles
since it maps the fibers isomorphically onto each other. �

4.5. Euclidian vector bundles. Let V be a finite dimensional real vector space.
Recall that a real valued function q : V → R is called quadratic if q satisfies
q(av) = a2q(v) for every v ∈ V and a ∈ R and the map b : V ×V → R defined by

b(v,w) :=
1

2
(q(v + w)− q(v)− q(w))

is a symmetric bilinear pairing. We also write v · w for b(v,w). We have in
particular: v · v = q(v). The quadratic function q is called positive definite if
q(v) > 0 for every v 6= 0.

Definition 4.10. A Euclidean vector space is a real vector space V together with
a positive definite quadratic function

q : V → R.

The real number v ·w is called inner product of the vectors v and w. The number
q(v) = v · v is also denoted by |v|2.

Definition 4.11. A Euclidean vector bundle is a real vector bundle ξ together
with a continuous map

q : E(ξ)→ R
such that the restriction of q to each fiber of ξ is positive definite and quadratic.
The map q is called a Euclidian metric on ξ.
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In the case of the tangent bundle τM of a smooth manifold, a Euclidian metric
q : DM → R is called a Riemannian metric, and M together with q is called a
Riemannian manifold.

Example 4.12. a) The trivial bundle εnB on a space B can be given the Euclidean
metric

q(b,x) = x2
1 + . . .+ x2

n.

b) Since the tangent bundle of Rn is trivial it follows that the smooth manifold
Rn possesses a standard Riemannian metric. Moreover, any smooth manifold
M ⊂ Rn, the composition

DM ⊂ DRn q−→ R
makes M into a Riemannian manifold.

Lemma 4.13. Let ξ be a trivial bundle of dimension n over a space B and let q
be any Euclidean metric on ξ. Then there exist n sections s1, . . . , sn of ξ which
are normal and orthogonal in the sense that

si(b) · sj(b) = δij

for each b ∈ B where δij is the Kronecker symbol.

Proof. The lemma of the previous lecture shows that ξ admits n nowhere depen-
dent sections. Pointwise application of the Gram-Schmidt orthonormalization
process yields orthonormal sections. �

4.6. Orthogonal complements. Given a sub-bundle ξ ⊂ η, is there a com-
plementary sub-bundle so that η splits as a Whitney sum? If η is a Euclidean
bundle, we can always find such a complement. We can construct it as follows.

Let Eb(ξ
⊥) denote the subspace of Eb(η) consisting of all vectors v such that

v · w = 0 for all Eb(ξ). Let E(ξ⊥) denote the union of all Eb(ξ
⊥).

Theorem 4.14. The space E(ξ⊥) is the total space of a sub-bundle ξ⊥ ⊂ η, and η
is isomorphic to the Whitney sum ξ⊕ ξ⊥. The bundle ξ⊥ is called the orthogonal
complement of ξ in η.

Proof. It is clear that each fiber Eb(η) is the direct sum of the subspaces Eb(ξ)
and Eb(ξ

⊥). Thus it remains to show the local triviality of ξ⊥. The lemma of the
previous lecture then implies that the map (v,w) 7→ v + w is an isomorphism of
vector bundles.
Given any point b0 ∈ B, let U be a neighborhood of b0 which is sufficiently small
that both ξ|U and η|U are trivial. Since ξ|U is trivial, we can choose orthonormal
sections s1, . . . , sm of ξ|U . We may enlarge this set of sections to a set of n
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independent local sections of η|U by first choosing s′m+1, . . . , s
′
n first in the fiber

Eb0(η). By the continuity of the determinant function, there is a neighborhood
V ⊂ U of b0 such that s1(b), . . . , sm(b), s′m+1(b), . . . , s′n(b) are linearly independent
for all b ∈ V and such that the si(b) vary continuously with b in V . Applying
the Gram-Schmidt orthonormalization process to s1, . . . , sm, s

′
m+1, . . . , s

′
n in each

fiber to obtain new sections s1, . . . , sn. The formulae for this process show that
the si vary continuously with b ∈ V . We can now define a trivialization

h : V × Rn−m → E(ξ⊥)

by the formula
h(b,x) = x1sm+1(b) + . . .+ xn−msn(b).

�

4.7. Stably trivial bundles. The direct sum of two trivial bundles is of course
again trivial. But the direct sum of two nontrivial bundles can also be trivial. If
one bundle is trivial, this phenomenon has been given a name.

Definition 4.15. A vector bundle ξ over B is called stably trivial if the direct
sum ξ ⊕ εn is a trivial bundle for some n.

Example 4.16. The direct sum of the tangent bundle τ and the normal bundle
ν to Sn−1 in Rn is the trivial bundle Sn−1 × Rn. For the elements of the direct
sum τ ⊕ ν are triples (x,v,tx) ∈ Sn−1 × Rn × Rn with x⊥v, and the map

(x, v, tx) 7→ (x, v + tx)

gives an isomorphism of τ ⊕ ν with Sn−1 × Rn. Since the normal bundle ν is
trivial, this shows that τ is stably trivial.

But there are also examples where both bundle are nontrivial whereas their
Whitney sum is trivial.

Example 4.17. Let γ1
n be the canonical line bundle on RPn. Then the map

(`, v, w) 7→ (`, v + w) for v ∈ ` and w⊥` defines an isomorphism γ1
n ⊕ (γ1

n)⊥ ∼=
RPn × Rn+1.

Example 4.18. Specializing the previous example to the case n = 1, we see that

γ1
1 ⊕ (γ1

1)⊥ ∼= RP1 × R2 ∼= S1 × R2.

The map that rotates a vector by 90 degrees defines an isomorphism between
(γ1

1)⊥ and γ1
1 . Since γ1

1 is isomorphic to the Möbius bundle over S1, this shows
that the direct sum of the Möbius bundle with itself is the trivial bundle.
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