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Lecture 05

G. Quick

5. Lecture 5: Euclidean bundles, orthogonal complements and
orientations

Recall that we defined the Whitney sum of two bundles:

Let ξ1, ξ2 be two vector bundles over the same space B. Let

d : B → B ×B
denote the diagonal embedding. The bundle d∗(ξ1 × ξ2) over B is called the
Whitney sum of ξ1 and ξ2, and will be denoted ξ1 ⊕ ξ2. Each fiber Eb(ξ1 ⊕ ξ2) is
canonically isomorphic to the direct sum of the fibers Eb(ξ1)⊕ Eb(ξ2).

Definition 5.1. Consider two vector bundles ξ and η over the same base space
B with E(ξ) ⊂ E(η). Then ξ is a sub-bundle of η, written ξ ⊂ η, if each fiber
Eb(ξ) is a sub-vector space of the corresponding fiber Eb(η).

Lemma 5.2. Let ξ1 and ξ2 be sub-bundles of η such that each vector space Eb(η) is
equal to the direct sum of the sub-spaces Eb(ξ1) and Eb(ξ2). Then η is isomorphic
to the Whitney sum ξ1 ⊕ ξ2.

Proof. Define a map

f : E(ξ1 ⊕ ξ2)→ E(ξ) by f(b, e1, e2) = e1 + e2.

The lemma of the previous lecture shows that f is an isomorphism of bundles
since it maps the fibers isomorphically onto each other. �

5.1. Euclidean vector bundles. Let V be a finite dimensional real vector space.
Recall that a real valued function q : V → R is called quadratic if q satisfies
q(av) = a2q(v) for every v ∈ V and a ∈ R and the map b : V ×V → R defined by

b(v,w) :=
1

2
(q(v + w)− q(v)− q(w))

is a symmetric bilinear pairing. We also write v · w for b(v,w). We have in
particular: v · v = q(v). The quadratic function q is called positive definite if
q(v) > 0 for every v 6= 0.

Definition 5.3. A Euclidean vector space is a real vector space V together with
a positive definite quadratic function

q : V → R.
1
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The real number v ·w is called inner product of the vectors v and w. The number
q(v) = v · v is also denoted by |v|2.

Definition 5.4. A Euclidean vector bundle is a real vector bundle ξ together
with a continuous map

q : E(ξ)→ R
such that the restriction of q to each fiber of ξ is positive definite and quadratic.
The map q is called a Euclidian metric on ξ.

In the case of the tangent bundle τM of a smooth manifold, a Euclidian metric
q : DM → R is called a Riemannian metric, and M together with q is called a
Riemannian manifold.

Example 5.5. a) The trivial bundle εnB on a space B can be given the Euclidean
metric

q(b,x) = x2
1 + . . .+ x2

n.

b) Since the tangent bundle of Rn is trivial it follows that the smooth manifold
Rn possesses a standard Riemannian metric. Moreover, any smooth manifold
M ⊂ Rn, the composition

DM ⊂ DRn q−→ R
makes M into a Riemannian manifold.

Lemma 5.6. Let ξ be a trivial bundle of dimension n over a space B and let q
be any Euclidean metric on ξ. Then there exist n sections s1, . . . , sn of ξ which
are normal and orthogonal in the sense that

si(b) · sj(b) = δij

for each b ∈ B where δij is the Kronecker symbol.

Proof. The lemma of the previous lecture shows that ξ admits n nowhere depen-
dent sections. Pointwise application of the Gram-Schmidt orthonormalization
process yields orthonormal sections. �

5.2. Orthogonal complements. Given a sub-bundle ξ ⊂ η, is there a com-
plementary sub-bundle so that η splits as a Whitney sum? If η is a Euclidean
bundle, we can always find such a complement. We can construct it as follows.

Let Eb(ξ
⊥) denote the subspace of Eb(η) consisting of all vectors v such that

v · w = 0 for all Eb(ξ). Let E(ξ⊥) denote the union of all Eb(ξ
⊥).

Theorem 5.7. The space E(ξ⊥) is the total space of a sub-bundle ξ⊥ ⊂ η, and η
is isomorphic to the Whitney sum ξ⊕ ξ⊥. The bundle ξ⊥ is called the orthogonal
complement of ξ in η.
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Proof. It is clear that each fiber Eb(η) is the direct sum of the subspaces Eb(ξ)
and Eb(ξ

⊥). Thus it remains to show the local triviality of ξ⊥. The lemma of the
previous lecture then implies that the map (v,w) 7→ v + w is an isomorphism of
vector bundles.

Given any point b0 ∈ B, let U be a neighborhood of b0 which is sufficiently
small that both ξ|U and η|U are trivial. Since ξ|U is trivial, we can choose
orthonormal sections s1, . . . , sm of ξ|U . We may enlarge this set of sections to a
set of n independent local sections of η|U by first choosing s′m+1, . . . , s

′
n in the fiber

Eb0(η). By the continuity of the determinant function, there is a neighborhood
V ⊂ U of b0 such that s1(b), . . . , sm(b), s′m+1(b), . . . , s

′
n(b) are linearly independent

for all b ∈ V and such that the si(b) vary continuously with b in V . Applying
the Gram-Schmidt orthonormalization process to s1, . . . , sm, s

′
m+1, . . . , s

′
n in each

fiber to obtain new sections s1, . . . , sn. The formulae for this process show that
the si vary continuously with b ∈ V . We can now define a trivialization

h : V × Rn−m → E(ξ⊥)

by the formula

h(b,x) = x1sm+1(b) + . . .+ xn−msn(b).

�

5.3. Stably trivial bundles. The direct sum of two trivial bundles is of course
again trivial. But the direct sum of two nontrivial bundles can also be trivial. If
one bundle is trivial, this phenomenon has been given a name.

Definition 5.8. A vector bundle ξ over B is called stably trivial if the direct sum
ξ ⊕ εn is a trivial bundle for some n.

Example 5.9. The direct sum of the tangent bundle τ and the normal bundle
ν to Sn−1 in Rn is the trivial bundle Sn−1 × Rn. For the elements of the direct
sum τ ⊕ ν are triples (x,v,tx) ∈ Sn−1 × Rn × Rn with x⊥v, and the map

(x, v, tx) 7→ (x, v + tx)

gives an isomorphism of τ ⊕ ν with Sn−1 × Rn. Since the normal bundle ν is
trivial, this shows that τ is stably trivial.

But there are also examples where both bundle are nontrivial whereas their
Whitney sum is trivial.

Example 5.10. Let γ1
n be the canonical line bundle on RPn. Then the map

(`, v, w) 7→ (`, v + w) for v ∈ ` and w⊥` defines an isomorphism γ1
n ⊕ (γ1

n)⊥ ∼=
RPn × Rn+1.
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Example 5.11. Specializing the previous example to the case n = 1, we see that

γ1
1 ⊕ (γ1

1)⊥ ∼= RP1 × R2 ∼= S1 × R2.

The map that rotates a vector by 90 degrees defines an isomorphism between
(γ1

1)⊥ and γ1
1 . Since γ1

1 is isomorphic to the Möbius bundle over S1, this shows
that the direct sum of the Möbius bundle with itself is the trivial bundle.

5.4. Oriented bundles. We start with a first working definition of orientation
of a vector bundle. Later we will discuss orientations in a more general context
and relate it elements in the cohomology groups of the total space.

Recall that an orientation of a real vector space V of dimension n > 0 is an
equivalence class of bases, where two ordered bases v1, . . . , vn and v′1, . . . , v

′
n are

said to be equivalent if and only if the matrix (aij) defined by the equation

v′i =
∑

aijvj

has positive determinant. Evidently every such vector space V has precisely two
distinct orientations.

Example 5.12. The vector space Rn has a canonical orientation corresponding
to its canonical ordered basis.

Definition 5.13. Let ξ be a real vector bundle given by the map π : E → B.
An orientation of ξ is a function assigning an orientation to each fiber in such a
way that near each point of B there is a local trivialization h : U ×Rn → π−1(U)
carrying the canonical orientation of Rn in the fibers of U×Rn to the orientations
of the fibers in π−1(U).

An oriented vector bundle ξ is a real vector bundle together with a choice of
orientation.

Note: Not all bundles can be oriented.

Example 5.14. a) Every trivial bundle is orientable. Hence the existence of an
orientation is a necessary condition for triviality.

b) The Möbius bundle is not orientable.

We will see in the next lecture that the Stiefel-Whitney class measures exactly
if a bundle is orientable or not.
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