
Math 231b
Lecture 08

G. Quick

8. Lecture 8: Existence and uniqueness of Stiefel-Whitney
classes I

Before we show that Stiefel-Whitney classes with the described properties ac-
tually exist we are going to see another interesting application of Stiefel-Whitney
classes.

8.1. Immersions of projective spaces into Euclidean space. Stiefel-Whitney
classes also help us decide whether a manifold can be immersed into a Euclidean
space. For if an n-dimensional manifold M can be immersed into Rn+k then

1 = w(τRn+k) = w(ν ⊕ τM)

where ν denotes the normal bundle of the embedding M ⊂ Rn+k. Hence by the
Whitney product formula

wi(ν) = w̄i(M)

where w̄i(M) denotes the ith component of the multiplicative inverse of the total
Stiefel-Whitney class w(M). Since ν is a k-dimensional bundle, this shows

w̄i(M) = 0 for i > k.

Example 8.1. A typical example is the real projective space P9. By our calcu-
lations in the previous lecture we know

w(P9) = (1 + a)10 = 1 +
9∑
i=1

(
10
i

)
ai = 1 + a2 + a8

since all other terms have an even coefficient. As a multiplicative inverse we get

w̄(P9) = 1 + a2 + a4 + a6,

for
(1 + a2 + a8)(1 + a2 + a4 + a6)

= 1 + a2 + a4 + a6 + a2 + a4 + a6 + a8 + a8 + a10 + a12 + a14

= 1 + 2a2 + 2a4 + 2a6 + 2a8

= 1.

Since w̄6(P9) 6= 0, k must be at least 6 if P9 can be immersed into R9+k.
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If n = 2r is a power of 2, then

w(Pn) = (1 + a)2r+1 = (1 + an)(1 + a) = 1 + a+ an

and
w̄(Pn) = 1 + a+ a2 + . . .+ an−1

since
(1 + a+ a2r

)(1 + a+ . . .+ an−1)
= 1 + a+ . . .+ an−1 + a+ a2 + . . .+ an + an

= 1 + 2(a+ a2 + . . .+ an)
= 1.

Together with the previous argument we get the following classical result.

Theorem 8.2. If P2r
can be immersed in R2r+k, then k must be at least 2r − 1.

Example 8.3. Since the theorem tells us that P8 cannot be immersed in R14, it
follows that P9 cannot be immersed in R14 either. This gives another proof that
the minimal dimension of a Euclidean space in which P9 can be immersed is 15.

8.2. Existence of Stiefel-Whitney classes. We still need to show that there
cohomology classes that satisfy the axioms of Stiefel-Whitney classes.

Theorem 8.4. There is a unique sequence of functions w1, w2, . . . assigning to
each real vector bundle E → B over a a space B a class wi(E) ∈ H i(B; Z/2),
depending only on the isomorphism type of E, such that
a) wi(f

∗E) = f ∗(wi(E)) for a pullback along a map f : B′ → B which is covered
by a bundle map.
b) w(E1 ⊕ E2) = w(E1)w(E2) where w = 1 + w1 + w2 + . . . ∈ H∗(B; Z/2).
c) wi(E) = 0 if i > dimE.
d) For the canonical line bundle γ1

1 on P1, w1(γ
1
1) is non-zero.

There are different methods to prove this theorem. We will prove it using the
following fundamental result of Leray and Hirsch on the cohomology of a fiber
bundle. Roughly speaking, a fiber bundle is the same thing as a vector bundle
except that we replace Rn by any topological space F .

Let p : E → B be a fiber bundle with fiber F . Then we can make H∗(E; Z/2)
into a module over the ringH∗(B; Z/2) by setting αβ = p∗(α)β for α ∈ H∗(B; Z/2)
and β ∈ H∗(E; Z/2). The Leray-Hirsch theorem then tells us that H∗(E; Z/2) is
a free H∗(B; Z/2)-module provided that for each fiber F the inclusion ι : F ↪→ E
induces a surjection on H∗(F ; Z/2) and Hn(F ; Z/2) is a finite dimensional Z/2-
vector space for each n. A basis for H∗(E; Z/2) as a H∗(B; Z/2)-module can be
chosen as any set of elements in H∗(E; Z/2) that map to a basis in H∗(F ; Z/2)



3

under ι∗.

The precise statement of the Leray-Hirsch theorem is:

Theorem 8.5. Let F
ι−→ E

p−→ B be a fiber bundle such that, for some commuta-
tive ring R:
a) Hn(F ;R) is a finitely generated free R-module for each n;
b) there exist classes cj ∈ Hkj (E;R) whose restrictions ι∗(cj) form a basis for
H∗(F ;R) in each fiber F .
Then the map ϕ : H∗(B;R)⊗RH∗(F ;R)→ H∗(E;R),

∑
ij bi⊗ι∗(xj) 7→

∑
ij p
∗(bi)xj,

is an isomorphism.

Now let us prove Theorem 8.4. For simplicity, we will assume that the base
base is paracompact.

Let ξ be a vector bundle of dimension n given by the map π : E → B. It comes
along with a projective bundle P(ξ) given by the induced map P(π) : P(E)→ B.
It is a fiber bundle whose fiber at b in B are the spaces of all lines through the
origin in the fiber Eb(ξ). The map P(π) is the natural projection sending each
line in π−1(b) to b. We topologize P(E) as a quotient of the complement of the
zero section of E modulo scalar multiplication in each fiber. Over a neighborhood
U in B where E is a product U ×Rn, this quotient is U × Pn−1. Hence P(ξ) is a
fiber bundle over B with fiber Pn−1.

Now we would like to apply the Leray-Hirsch theorem to the fiber bundle
P(ξ). Therefore we need classes xi ∈ H i(P(E); Z/2) restricting to generators of
H i(Pn−1; Z/2) in each fiber Pn−1 for i = 0, . . . , n− 1.

We will use the following lemma.

Lemma 8.6. There is a map g : E → R∞ =
⋃
n Rn that is a linear injection

on each fiber. Any two such maps are homotopic through maps that are linear
injections on fibers.

Proof. Since B is paracompact there is a countable open cover Uj of B such
that E is trivial over each Uj and there is a partition of unity {ϕj} with ϕj
supported on Uj. Let gj : π−1(Uj) → Rn be the composition of a trivialization
π−1(Uj)→ Uj × Rn with the projection onto Rn. The map

(ϕjπ)gj : π−1(Uj)→ Rn, v 7→ ϕj(π(v))gj(v)

extends to a map E → Rn that is zero outside π−1(Uj). Near each point of B
only finitely many ϕj’s are nonzero, and at least one ϕj is nonzero. Hence these
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extended maps (ϕjπ)gj are the coordinates of a map g : E → (Rn)∞ = R∞ that
is a linear injection on each fiber.

Now let g0 and g1 be two such maps that are linear injections on fibers. Then
let Lt be the homotopy

Lt : R∞ → R∞, Lt(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(x1,0,x2, 0, . . .).

For each t, this is a linear map whose kernel is easily computed to be 0. Hence Lt
is injective. Composing Lt with g0 moves the image of g0 into the odd-numbered
coordinates. Similarly, we can move the image of g1 into the even-numbered
coordinates. By abuse of notation we denote the resulting shifted maps still by
g0 and g1 respectively. Then we set

gt = (1− t)g0 + tg1.

This is a linear map which is injective on fibers for each t since g0 and g1 are
linear and injective on fibers. �

Given the linear injection g of the lemma, we can projectivize it by delet-
ing zero vectors and then take the quotient by scalar multiplication. This gives
us a map P(g) : P(E) → P∞. Let y be a generator of H1(P∞; Z/2) and let
x = P(g)∗(y) ∈ H1(P(E); Z/2). Then the powers xi := xi ∈ H i(P(E); Z/2) for
i = 0, . . . , n− 1 are the desired classes since a linear injection Rn ↪→ R∞ induces
an embedding Pn−1 ↪→ P∞ for which y pulls back to a generator of H1(Pn−1; Z/2)
(because the classes are nonzero).

Note that the classes xi do not depend on the choice of g. For any two linear
injections Rn ↪→ R∞ are homotopic through linear injections, so the induced em-
beddings Pn−1 ↪→ P∞ of different fibers of P(E) are all homotopic. The second
assertion of the lemma then implies the claim.

Hence, by the Leray-Hirsch theorem, H∗(P(E); Z/2) is a free H∗(B; Z/2)-
module with basis 1, x, . . . , xn−1. Consequently, xn can be expressed uniquely
as a linear combination of these basis elements with coefficients in H∗(B; Z/2).
Thus there is a unique relation of the form

xn + w1(E)xn−1 + . . .+ wn(E) = 0

for certain classes wi(E) ∈ H i(B; Z/2). Together with the convention wi(E) = 0
for i > n and w0(E) = 1 this is our definition of the Stiefel-Whitney classes of E.
It remains to show that these classes satisfy the desired properties.
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