
Math 231b
Lecture 09

G. Quick

9. Lecture 9: Existence and uniqueness of Stiefel-Whitney
classes II

We continue the proof of the following theorem that shows that there exist
unique Stiefel-Whitney classes.

Theorem 9.1. There is a unique sequence of functions w1, w2, . . . assigning to
each real vector bundle E → B over a a space B a class wi(E) ∈ H i(B; Z/2),
depending only on the isomorphism type of E, such that
a) wi(f

∗E) = f ∗(wi(E)) for a pullback along a map f : B′ → B which is covered
by a bundle map.
b) w(E1 ⊕ E2) = w(E1)w(E2) where w = 1 + w1 + w2 + . . . ∈ H∗(B; Z/2).
c) wi(E) = 0 if i > dimE.
d) For the canonical line bundle γ1

1 on P1, w1(γ
1
1) is non-zero.

9.1. Existence of Stiefel-Whitney classes. In the previous lecture we defined
the Stiefel-Whitney classes wi(E) for any vector bundle π : E → B. Recall that
for simplicity we assume that the base space B is paracompact. The idea was
the following.

Our bundle induces a map g : E → R∞ which is linear and injective on each
fiber. We can projectivize it by deleting zero vectors and then take the quotient
by scalar multiplication. This gives us a map P(g) : P(E)→ P∞. Let y be a gen-
erator of H1(P∞; Z/2) and let x = P(g)∗(y) ∈ H1(P(E); Z/2). Then the powers
xi := xi ∈ H i(P(E); Z/2) for i = 0, . . . , n− 1 are the desired classes since a linear
injection Rn ↪→ R∞ induces an embedding Pn−1 ↪→ P∞ for which y pulls back to
a generator of H1(Pn−1; Z/2) (because the classes are nonzero).

Note that the classes xi do not depend on the choice of g. For any two linear
injections Rn ↪→ R∞ are homotopic through linear injections, so the induced em-
beddings Pn−1 ↪→ P∞ of different fibers of P(E) are all homotopic. The second
assertion of the lemma then implies the claim.

Hence, by the Leray-Hirsch theorem, H∗(P(E); Z/2) is a free H∗(B; Z/2)-
module with basis 1, x, . . . , xn−1. Consequently, xn can be expressed uniquely
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as a linear combination of these basis elements with coefficients in H∗(B; Z/2).
Thus there is a unique relation of the form

xn + w1(E)xn−1 + . . .+ wn(E) = 0

for certain classes wi(E) ∈ H i(B; Z/2). Together with the convention wi(E) = 0
for i > n and w0(E) = 1 this is our definition of the Stiefel-Whitney classes of E.
It remains to show that these classes satisfy the desired properties.

a) Consider a pullback bundle f ∗E = E ′:

E ′
f ′

//

π′

��

E

π

��
B′

f // B

If g : E → R∞ is a map that is a linear injection on fibers then so is gf ′. It follows
that P(f ′)∗ takes the canonical class x = x(E) in H1(P(E); Z/2) to the canonical
class x(E ′) in H1(P(E ′); Z/2). Then

P(f ′)∗(
∑

i P(π)∗(wi(E)) · x(E)n−i) =
∑

i[P(f ′)∗ ◦ P(π)∗(wi(E))] · [P(f ′)∗(x(E)n−i)]
=

∑
i P(π′)∗ ◦ f ∗(wi(E) · x(E ′))n−i

in H∗(E ′; Z/2). This shows that the relation

x(E)n + w1(E)x(E)n−1 + . . .+ wn(E) = 0 defining wi(E)

pulls back to the relation

x(E ′)n + f ∗w1(E)x(E ′)n−1 + . . .+ f ∗wn(E) = 0 defining wi(E
′).

By the uniqueness of this relation in the free H∗(B; Z/2)-module H∗(E; Z/2), we
get wi(E

′) = f ∗(wi(E)).

b) The inclusions of E1 and E2 into E1 ⊕ E2 give inclusions of P(E1) and
P(E2) into P(E1⊕E2) with P(E1)∩P(E2) = ∅. Let U1 = P(E1⊕E2)−P(E1) and
U2 = P(E1⊕E2)−P(E2). These are open sets in P(E1⊕E2) which cover P(E1⊕E2)
and that deformation retract onto P(E1) and P(E2) respectively. This means that
the inclusions P(E1) ↪→ U2 and P(E2) ↪→ U1 are homotopy equivalences.

A map g : E1⊕E2 → R∞ which is a linear injection on fibers restricts to such a
map on E1 and E2. By the way we constructed the canonical classes, this implies
that the canonical class x ∈ H1(P(E1 ⊕ E2; Z/2) for E1 ⊕ E2 restricts to the
canonical classes for E1 and E2.

If E1 and E2 have dimensions m and n, we consider the classes

ω1 =
∑
j

wj(E1)x
m−j and ω2 =

∑
j

wj(E2)x
n−j in H∗(P(E1 ⊕ E2); Z/2).
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Their cup product is

ω1 · ω2 =
∑
j

[
∑
r+s=j

wr(E1)wr(E2)]x
m+n−j.

By the definition of the classes wj(E1), the class ω1 restricts to zero inHm(P(E1); Z/2).
Hence ω1 pulls back to a class in the relative group

Hm(P(E1 ⊕ E2),P(E1); Z/2) ∼= Hm(P(E1 ⊕ E2), U2; Z/2).

and ω2 pulls back to a class in the relative group

Hn(P(E1 ⊕ E2),P(E2); Z/2) ∼= Hn(P(E1 ⊕ E2), U1; Z/2).

The following commutative diagram then shows that ω1 · ω2 = 0:

Hm(P(E1 ⊕ E2), U2; Z/2)×Hn(P(E1 ⊕ E2), U1; Z/2) //

��

Hm+n(P(E1 ⊕ E2), U1 ∪ U2; Z/2) = 0

��
Hm(P(E1 ⊕ E2); Z/2)×Hn(P(E1 ⊕ E2); Z/2) // Hm+n(P(E1 ⊕ E2); Z/2).

This shows that

ω1 · ω2 =
∑
j

[
∑
r+s=j

wr(E1)wr(E2)]x
m+n−j = 0

is the defining relation for the Stiefel-Whitney classes of E1 ⊕ E2. Thus

wj(E1 ⊕ E2) =
∑
r+s=j

wr(E1)wr(E2).

c) holds by definition.

d) Recall that the canonical line bundle γ1 on P∞ is given by

E(γ1) = {(`,v) ∈ P∞ × R∞|v ∈ `}.

The map P(π) is the identity in this case, i.e. γ1 is equal to its own projective
bundle. The map g : E → R∞ which is a linear injection on fibers can be taken
to be

g(`,v) = v.

So P(g) is also the identity and x(E) is a generator of H1(P∞; Z/2) and restricts
to the generator in H1(P1; Z/2). This proves the existence of Stiefel-Whitney
classes.
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9.2. Uniqueness. To show the uniqueness we will use an important property of
vector bundles, the splitting principle:

Proposition 9.2. For each vector bundle π : E → B there is a space F (E) and
a map P : F (E)→ B such that the pullback p∗(E)→ F (E) splits as a direct sum
of line bundles, and p∗ : H∗(B; Z/2)→ H∗(F (E); Z/2) is injective.

Now we can finish the proof of Theorem 9.1 and show the uniqueness of Stiefel-
Whitney classes. Property d) determines w1(γ

1) for the canonical line bundle
γ1 → P∞. Property c) then determines all the wi(γ

1)’s. We will now use the
following property of the line bundle γ1.

Remark 9.3. The canonical line bundle γ1 on P∞ is the universal line bundle in
the following sense. Given a line bundle ξ, then there is a bundle map f : ξ → γ1

which is unique up to homotopy. For let ξ be given by a map π : E → B. We
have seen in the previous lecture that we can find a map g : E → R∞ that is
linear and injective on fibers. Then we can define f by

f(e) = (g(fiber through e), g(e)) ∈ γ1.

Using the universality of γ1, we see that property a) therefore determines the
classes wi for all line bundles. Property b) extends this to sums of line bundles.
Finally, the splitting principle implies that the w′is are determined for all bundles.
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