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9. LECTURE 9: EXISTENCE AND UNIQUENESS OF STIEFEL- WHITNEY
CLASSES 11

We continue the proof of the following theorem that shows that there exist
unique Stiefel-Whitney classes.

Theorem 9.1. There is a unique sequence of functions wq,ws, ... assigning to
each real vector bundle E — B over a a space B a class w;(E) € H(B;Z/2),
depending only on the isomorphism type of E, such that

a) w;(f*E) = f*(w;(E)) for a pullback along a map f: B' — B which is covered
by a bundle map.

b) w(E & Ey) = w(E))w(Es) where w =1+ w; +wy+ ... € H*(B;Z/2).

c) w;(F)=0 ifi>dimFE.

d) For the canonical line bundle v on P, wi(v1) is non-zero.

9.1. Existence of Stiefel-Whitney classes. In the previous lecture we defined
the Stiefel-Whitney classes w;(E) for any vector bundle 7: E — B. Recall that
for simplicity we assume that the base space B is paracompact. The idea was
the following.

Our bundle induces a map ¢g: £ — R* which is linear and injective on each
fiber. We can projectivize it by deleting zero vectors and then take the quotient
by scalar multiplication. This gives us a map P(g): P(E) — P*. Let y be a gen-
erator of H'(P>*;Z/2) and let x = P(g)*(y) € H'(P(E);Z/2). Then the powers
z;:=x2'€ H(P(E);Z/2) for i =0,...,n— 1 are the desired classes since a linear
injection R™ — R induces an embedding P*~! < P> for which y pulls back to
a generator of H'(P"~1;7Z/2) (because the classes are nonzero).

Note that the classes 2° do not depend on the choice of g. For any two linear
injections R"™ < R> are homotopic through linear injections, so the induced em-
beddings P"~! < P> of different fibers of P(E) are all homotopic. The second
assertion of the lemma then implies the claim.

Hence, by the Leray-Hirsch theorem, H*(P(E);Z/2) is a free H*(B;Z/2)-
module with basis 1,x,...,2"'. Consequently, 2" can be expressed uniquely
1



2

as a linear combination of these basis elements with coefficients in H*(B;Z/2).
Thus there is a unique relation of the form

2"+ w (E)x" 4w (E) =0
for certain classes w;(E) € H'(B;Z/2). Together with the convention w;(E) = 0
for i > n and wy(E) = 1 this is our definition of the Stiefel-Whitney classes of E.
It remains to show that these classes satisfy the desired properties.
a) Consider a pullback bundle f*E = E':

E/fH.E

B/#B

If g: E — R* is a map that is a linear injection on fibers then so is g f’. It follows
that P(f')* takes the canonical class x = z(F) in H'(P(E);Z/2) to the canonical
class z(E') in H'(P(E’);Z/2). Then

PO (32 P(m)*(wi( E)) - a(E)"™) = 32[P(f)" o P(m)* (wi(E))] - [P(f')*(x(E)")]
P(7)* o f*(wi(E) - x(E"))"

in H*(E';Z/2). This shows that the relation
(E)" 4wy (B)x(E)" ™ + ...+ w,(E) = 0 defining w;(E)
pulls back to the relation
o(EN" 4+ ffw (BE)x(EN"™ + ...+ ffw,(E) = 0 defining w;(E").
By the uniqueness of this relation in the free H*(B;Z/2)-module H*(F;Z/2), we
get wi(E') = f*(wi(E)).
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b) The inclusions of E; and E, into E; & Es give inclusions of P(F;) and
P(E,) into P(E, & Es) with P(E,) NP(E;) = 0. Let U; = P(E, @ E,) — P(E;) and
Uy = P(E1® Ey)—P(Es). These are open sets in P(F, @ FE5) which cover P(E; @ Es)
and that deformation retract onto P(E}) and P(Es) respectively. This means that
the inclusions P(F}) < Uy and P(F5) — U; are homotopy equivalences.

A map g: Fy® Ey — R* which is a linear injection on fibers restricts to such a
map on F; and E,. By the way we constructed the canonical classes, this implies
that the canonical class © € HY(P(E; & E;Z/2) for Ey @& Es restricts to the
canonical classes for F; and E5.

If £y and E5 have dimensions m and n, we consider the classes

wy = ij(El)xm_j and wy = ij(Eg)x”_j in H*(P(E, @ E);Z/2).
- -
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Their cup product is

Wi wp = Z[ Z w, (B )w,(EBy)|z™ .

jrts=j

By the definition of the classes w;(E}), the class w restricts to zero in H™(P(E4);Z/2).
Hence w; pulls back to a class in the relative group

and wy pulls back to a class in the relative group

H"(P(E, & B»),P(E»); Z/2) = H"(P(E, & E»),U1; Z,)2).

The following commutative diagram then shows that w; - wy = 0:

Hm(P(El D EQ), U2,Z/2) X Hn(P(El D EQ), Ul,Z/Q) _— Hern(]P)(El D EQ), Ul U UQ,Z/2) =0

| |

H™(P(E, @ E»); Z)2) x H'(B(E; ® E»): Z/2) H™ (BB, @ Ey): Z)2).

This shows that
wiwr =Y [ Y wi(Byun(By)la™ I =0
J rs=j
is the defining relation for the Stiefel-Whitney classes of Ey & Es. Thus
wj<E1 D EQ) = Z wT(EI)wT(EQ).

r4+s=j

¢) holds by definition.

d) Recall that the canonical line bundle v! on P> is given by
E(y") = {(tw) € P* x R™®|v € ¢}.

The map P(7) is the identity in this case, i.e. 7' is equal to its own projective
bundle. The map g: F — R* which is a linear injection on fibers can be taken
to be

g(lw) = .

So P(g) is also the identity and x(E) is a generator of H'(P>;Z/2) and restricts
to the generator in H'(P';Z/2). This proves the existence of Stiefel-Whitney
classes.
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9.2. Uniqueness. To show the uniqueness we will use an important property of
vector bundles, the splitting principle:

Proposition 9.2. For each vector bundle w: E — B there is a space F(E) and
a map P: F(FE) — B such that the pullback p*(E) — F(FE) splits as a direct sum
of line bundles, and p*: H*(B;Z/2) — H*(F(E);Z/2) is injective.

Now we can finish the proof of Theorem 9.1 and show the uniqueness of Stiefel-
Whitney classes. Property d) determines w;(y') for the canonical line bundle

vt — P*. Property c) then determines all the w;(y')’s. We will now use the
following property of the line bundle ~!.

Remark 9.3. The canonical line bundle 4! on P> is the universal line bundle in
the following sense. Given a line bundle &, then there is a bundle map f: & — !
which is unique up to homotopy. For let £ be given by a map n: £ — B. We
have seen in the previous lecture that we can find a map ¢g: £ — R* that is
linear and injective on fibers. Then we can define f by

f(e) = (g(fiber through e), g(e)) € ~'.

Using the universality of 4!, we see that property a) therefore determines the
classes w; for all line bundles. Property b) extends this to sums of line bundles.
Finally, the splitting principle implies that the w}s are determined for all bundles.
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