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Lecture 10

G. Quick

10. LECTURE 10: SPLITTING PRINCIPLE AND THE PROJECTIVE BUNDLE
FORMULA

There are two leftovers from the proof of the existence and uniqueness of Stiefel-
Whitney classes. One is the splitting principle, the other one is the Leray-Hirsch
theorem.

10.1. The splitting principle.

Proposition 10.1. For each vector bundle w: E — B there is a space F(E) and
a map p: F(E) — B such that the pullback p*(E) — F(E) splits as a direct sum
of line bundles, and p*: H*(B;Z/2) — H*(F(E);Z/2) is injective.

Proof. Consider the pullback P(7)*(E) of E via the map P(x): P(E) — B. This
pullback contains a natural one-dimensional sub-bundle

L={(tw)eP(E)x E|vel}.

Assuming B is paracompact (although this holds for any B) we can equip F with
an inner product. This inner product pulls back to an inner product on P(7)*(E).
Hence we get a splitting of the pullback as a sum L @ L*. The orthogonal
bundle L+ now has dimension less than F. By the Leray-Hirsch theorem we
know H*(P(E);Z/2) is the free H*(B;Z/2)-module with basis 1,z,...,2""!. In
particular, the induced map

H*(B;Z/2) — H*(P(E); Z/2)

is injective since one of the basis elements is 1.
Now we can repeat this construction for the bundle L+ — P(E) instead of £ — B.
After finitely many steps we obtain the desired result. O

Remark 10.2. We can describe F(FE) as follows. The complement L+ consist of
pairs (£,v) € P(E) x E with v Lf. At the next stage we construct P(L*), whose
points are pairs (£,¢') where ¢ and ¢ are orthogonal lines in £. Continuing this
way, we see that the final space F(FE) is the space of all orthogonal splittings
(@ ... ® L, of fibers of E as sums of lines, and the vector bundle over F(FE)
consists of all n-tuples of vectors in these lines.

In the previous proof we used the following result.
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Proposition 10.3. Let B be a paracompact space and & a real vector bundle
given by the map w: E — B. Then & can be given the structure of a Euclidean
vector bundle.

Proof. See problem set 1. O

10.2. The Leray-Hirsch theorem. The precise statement of the Leray-Hirsch
theorem is:

Theorem 10.4. Let F 5 E 2 B be a fiber bundle such that, for a principal
tdeal ring R:

a) H"(F; R) is a finitely generated free R-module for each n;

b) there exist classes ¢; € H¥(E;R) for j = 1,...,r whose restrictions t*(c;)
form a basis for the R-module &, H"(F; R) in each fiber F.

Then the map p: H*(B; R)@pH*(F; R) — H*(E; R), >, bi@u*(¢;) = 32, 0" (bi)ey,
18 an isomorphism.

Remark 10.5. 1. Note that the theorem makes only an assertion on the structure

of H*(E; R) as an H*(B; R)-module. It does not specify the ring structure of
H*(E; R). In fact, there are examples where the map

¢: H*(B;R) @g H*(F; R) - H*(E; R)
is not a ring isomorphism.
2. An example of a fiber bundle where the assertion of the theorem does not
hold is the Hopf bundle
St — 58 Ly 52,
(Recall that f can be defined as f: S® — CP! = S? viewing S® as the unit

sphere in the complex plane C2. Such an f is the attaching map in the complex
projective plane CP? = 5% Uy e* where e is a disk of dimension 4.)

We know that H*(S?; R) is not isomorphic to H*(S?%; R) @ g H*(S*; R). For we
have
H'(S* R) =0but H'(S* R) @ H*(S"; R) = R.
The assumptions of the theorem require that the map *: H*(F; R) — H*(F; R)
is surjective in each degree. This is obviously not the case for the Hopf bundle.

Sketch of a proof of Theorem 10.4 for compact base spaces:

Throughout the proof we write H*(X) for H*(X; R). We only sketch a proof
for the case that B is compact, though the theorem holds for arbitrary base
spaces.



Let Ube an open subset of B such that there is a homeomorphism
h: By =7 '(U) = U x F.

Let jy: Fy — FE be the natural inclusion and 7y be the restriction of 7 to
U. Then the Kiinneth Theorem says that the map ny.: H*(U) — H*(Ey) is
injective and the elements j;;(¢1),...,j5(¢c.) form a basis of the H*(U)-module

H*(Euy).

Now assume that the theorem is true over the open subsets U, V and U NV
We want to show that it is also true over U U V. Therefore we introduce two
functors K™(W) and L"™(W) on the open subsets W of B as follows. Let ¢; be an
indeterminant of degree k;. (The ¢; have no real meaning, they are just useful to
define something else.) We set

K" (W) = iH”_kj(W)tj, and L"(W) := H"(Ey).

For every W we have the homomorphism
Ow: K"(W) — L (W), > ajt;j > " (x5)c;.
J J

Then we convince ourselves that the theorem is true over W if and only if Oy is
an isomorphism.

The functor W +— L"(W) is just the restriction of a functor which satisfies the
Mayer-Vietoris property. The functor W +— K"(W) is a direct sum of functors
which satisfy the Mayer-Vietoris property. Hence we have the following commu-
tative diagram with exact rows:

K™Y U) & K" Y(V) —= K" (UNV)—= K"UUV) — K"(U) & K"(V) —= K" (U N V)

| | o | |

LY U) & L Y(V) ——= L YU NV) —= LU UV) — L*(U) & L'(V) — L*(U N V)

By our assumption the theorem is true for U, V and U NV and hence the four
unlabeled vertical maps are isomorphisms. By the 5-Lemma, the map Oy is
thus an isomorphism too. Hence the theorem also holds over U U V.

Now it remains to cover B by finitely many open sets B = U; U ... U U, such
that our bundle becomes trivial over each U;. This completes the proof for a
compact base space.



More sophisticated arguments using the Serre spectral sequence associated to
the fibration sequence F = E 2 B also prove the general case. A more elemen-

tary proof of the general statement can be found in Hatcher’s book (Theorem
4D.1).
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