
Math 231b
Lecture 10

G. Quick

10. Lecture 10: Splitting principle and the projective bundle
formula

There are two leftovers from the proof of the existence and uniqueness of Stiefel-
Whitney classes. One is the splitting principle, the other one is the Leray-Hirsch
theorem.

10.1. The splitting principle.

Proposition 10.1. For each vector bundle π : E → B there is a space F (E) and
a map p : F (E)→ B such that the pullback p∗(E)→ F (E) splits as a direct sum
of line bundles, and p∗ : H∗(B;Z/2)→ H∗(F (E);Z/2) is injective.

Proof. Consider the pullback P(π)∗(E) of E via the map P(π) : P(E)→ B. This
pullback contains a natural one-dimensional sub-bundle

L = {(`,v) ∈ P(E)× E|v ∈ `}.
Assuming B is paracompact (although this holds for any B) we can equip E with
an inner product. This inner product pulls back to an inner product on P(π)∗(E).
Hence we get a splitting of the pullback as a sum L ⊕ L⊥. The orthogonal
bundle L⊥ now has dimension less than E. By the Leray-Hirsch theorem we
know H∗(P(E);Z/2) is the free H∗(B;Z/2)-module with basis 1, x, . . . , xn−1. In
particular, the induced map

H∗(B;Z/2)→ H∗(P(E);Z/2)

is injective since one of the basis elements is 1.
Now we can repeat this construction for the bundle L⊥ → P(E) instead of E → B.
After finitely many steps we obtain the desired result. �

Remark 10.2. We can describe F (E) as follows. The complement L⊥ consist of
pairs (`,v) ∈ P(E) × E with v⊥`. At the next stage we construct P(L⊥), whose
points are pairs (`,`′) where ` and `′ are orthogonal lines in E. Continuing this
way, we see that the final space F (E) is the space of all orthogonal splittings
`1 ⊕ . . . ⊕ `n of fibers of E as sums of lines, and the vector bundle over F (E)
consists of all n-tuples of vectors in these lines.

In the previous proof we used the following result.
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Proposition 10.3. Let B be a paracompact space and ξ a real vector bundle
given by the map π : E → B. Then ξ can be given the structure of a Euclidean
vector bundle.

Proof. See problem set 1. �

10.2. The Leray-Hirsch theorem. The precise statement of the Leray-Hirsch
theorem is:

Theorem 10.4. Let F
ι−→ E

p−→ B be a fiber bundle such that, for a principal
ideal ring R:
a) Hn(F ;R) is a finitely generated free R-module for each n;
b) there exist classes cj ∈ Hkj(E;R) for j = 1, . . . , r whose restrictions ι∗(cj)
form a basis for the R-module ⊕nHn(F ;R) in each fiber F .
Then the map ϕ : H∗(B;R)⊗RH∗(F ;R)→ H∗(E;R),

∑
ij bi⊗ι∗(cj) 7→

∑
ij p
∗(bi)cj,

is an isomorphism.

Remark 10.5. 1. Note that the theorem makes only an assertion on the structure
of H∗(E;R) as an H∗(B;R)-module. It does not specify the ring structure of
H∗(E;R). In fact, there are examples where the map

ϕ : H∗(B;R)⊗R H∗(F ;R)→ H∗(E;R)

is not a ring isomorphism.

2. An example of a fiber bundle where the assertion of the theorem does not
hold is the Hopf bundle

S1 → S3 f−→ S2.

(Recall that f can be defined as f : S3 → CP1 = S2, viewing S3 as the unit
sphere in the complex plane C2. Such an f is the attaching map in the complex
projective plane CP2 = S2 ∪f e4 where e4 is a disk of dimension 4.)

We know that H∗(S3;R) is not isomorphic to H∗(S2;R)⊗RH∗(S1;R). For we
have

H1(S3;R) = 0 but H0(S2;R)⊗R H1(S1;R) ∼= R.

The assumptions of the theorem require that the map ι∗ : H∗(E;R)→ H∗(F ;R)
is surjective in each degree. This is obviously not the case for the Hopf bundle.

Sketch of a proof of Theorem 10.4 for compact base spaces:

Throughout the proof we write H∗(X) for H∗(X;R). We only sketch a proof
for the case that B is compact, though the theorem holds for arbitrary base
spaces.
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Let Ube an open subset of B such that there is a homeomorphism

h : EU := π−1(U)→ U × F.

Let jU : EU ↪→ E be the natural inclusion and πU be the restriction of π to
U . Then the Künneth Theorem says that the map πU∗ : H

∗(U) → H∗(EU) is
injective and the elements j∗U(c1), . . . , j

∗
U(cr) form a basis of the H∗(U)-module

H∗(EU).

Now assume that the theorem is true over the open subsets U , V and U ∩ V .
We want to show that it is also true over U ∪ V . Therefore we introduce two
functors Kn(W ) and Ln(W ) on the open subsets W of B as follows. Let tj be an
indeterminant of degree kj. (The tj have no real meaning, they are just useful to
define something else.) We set

Kn(W ) :=
r∑
j=1

Hn−kj(W )tj, and Ln(W ) := Hn(EW ).

For every W we have the homomorphism

θW : Kn(W )→ Ln(W ),
∑
j

xjtj 7→
∑
j

π∗(xj)cj.

Then we convince ourselves that the theorem is true over W if and only if θW is
an isomorphism.

The functor W 7→ Ln(W ) is just the restriction of a functor which satisfies the
Mayer-Vietoris property. The functor W 7→ Kn(W ) is a direct sum of functors
which satisfy the Mayer-Vietoris property. Hence we have the following commu-
tative diagram with exact rows:

Kn−1(U)⊕Kn−1(V )

��

// Kn−1(U ∩ V )

��

// Kn(U ∪ V )

θU∪V

��

// Kn(U)⊕Kn(V )

��

// Kn(U ∩ V )

��
Ln−1(U)⊕ Ln−1(V ) // Ln−1(U ∩ V ) // Ln(U ∪ V ) // Ln(U)⊕ Ln(V ) // Ln(U ∩ V )

By our assumption the theorem is true for U , V and U ∩ V and hence the four
unlabeled vertical maps are isomorphisms. By the 5-Lemma, the map θU∪V is
thus an isomorphism too. Hence the theorem also holds over U ∪ V .

Now it remains to cover B by finitely many open sets B = U1 ∪ . . . ∪ Un such
that our bundle becomes trivial over each Ui. This completes the proof for a
compact base space.
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More sophisticated arguments using the Serre spectral sequence associated to

the fibration sequence F
ι−→ E

p−→ B also prove the general case. A more elemen-
tary proof of the general statement can be found in Hatcher’s book (Theorem
4D.1).
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