
Math 231b
Lecture 12

G. Quick

12. Lecture 12: Representability of Vectk(B)

Our next goal is to prove the following fundamental result.

Theorem 12.1. For a paracompact space B, the map [B,Grk] → Vectk(B),
[f ] 7→ f ∗(γk), is a bijection.

Remark 12.2. The theorem justifies to call the infinite Grassmannian Grk is
the classifying space and γk is the universal bundle for k-dimensional real vector
bundles.

Example 12.3. Let τ be the tangent bundle to Sn in Rn+1. It is given by the
projection p : E(τ)→ Sn where

E(τ) = {(x, v) ∈ Sn × Rn+1|x⊥v}.

Each fiber p−1(x) is an n-plane and hence defines a point in Grn(Rn+1). This
defines a map

Sn → Grn(Rn+1), x 7→ p−1(x).

Via the inclusion Rn+1 ↪→ R∞ we can view this as a map

f : Sn → Grn(R∞) = Grn.

The bundle τ is exactly the pullback f ∗(γn). We check this on total spaces in the
diagram

E(τ) ∼= f ∗(E(γn)) //

p

��

E(γn)

π

��
Sn

f // Grn.

since we have

f ∗(E(γn)) = {(x, (V, v)) ∈ Sn×E(γn)|f(x) = π(V,v)} = {(x, (V, v))|p−1(x) = V, i.e. x⊥v}.

12.1. Proof of Theorem 12.1. We first claim that, for a k-dimensional bundle
p : E = E(ξ)→ B, an isomorphism ξ ∼= f ∗(γk) is equivalent to a map g : E → R∞
which is linear and injective on each fiber. To prove this claim suppose we have a
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map f : B → Grk and an isomorphism ξ ∼= f ∗(γk). Then we have a commutative
diagram

E

p
""

∼= // f ∗(γk)
f ′ //

��

E(γk)

��

gk // R∞

B
f // Grk

with gk(V,v) = v. The composition along the top row is a map g : E → R∞ which
is linear and injective on each fiber, since both f ′ and gk have this property.
Conversely, given a map g : E → R∞ which is linear and injective on each fiber,
define f : B → Grk by letting f(b) be the k-plane g(p−1(b)). This yields a com-
mutative diagram as above.

Now we are ready to prove the theorem. We start with the surjectivity of the
map [B,Grk] → Vectk(B). Let ξ be a k-dimensional bundle given by the map
p : E → B. Since B is paracompact there is a countable open cover {Uj} of B
such that ξ is trivial over each Uj and there is a partition of unity {ϕj} with ϕj
supported on Uj. Let gj : π−1(Uj) → Rn be the composition of a trivialization
p−1(Uj)→ Uj × Rn with the projection onto Rn. The map

(ϕj ◦ p) · gj : p−1(Uj)→ Rn, v 7→ ϕj(p(v)) · gj(v)

extends to a map E → Rn that is zero outside p−1(Uj). Near each point of B
only finitely many ϕj’s are nonzero, and at least one ϕj is nonzero. Hence these
extended maps (ϕj ◦ p) · gj are the coordinates of a map g : E → (Rn)∞ = R∞
that is a linear injection on each fiber. By our claim above this induces a map
f : B → Grk and the proof of surjectivity is complete.

For injectivity, let f0, f1 : B → Grk be two maps with isomorphisms ξ ∼= f ∗0 (γk)
and ξ ∼= f ∗1 (γk). By our first claim these two maps induce maps g0, g1 : E → R∞
which are linear and injective on each fiber. We will now show that g0 and g1 are
homotopic through maps gt which are linear and injective on each fiber. Then f0
and f1 are homotopic via

ft(b) = gt(p
−1(b)).

Therefore, let Lt be the homotopy

Lt : R∞ → R∞, Lt(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(x1, 0, x2, 0, . . .).

For each t, this is a linear map. Its kernel is trivial, since if

Lt(x1, . . . , xn) = ((1− t)x1 + tx1, (1− t)x2, (1− t)x3 + tx2, . . .) = 0

then we get x1 = 0, x2 = 0, . . .. Hence Lt is injective. Composing Lt with g0
moves the image of g0 into the odd-numbered coordinates and we have a homotopy
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which is linear and injective on fibers

g0 = L0 ◦ g0 ∼ L1 ◦ g0 =: g̃0.

Similarly, let Mt be the homotopy

Mt : R∞ → R∞, Mt(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(0, x1, 0, x2, 0, . . .).

For each t, this is a linear map. Its kernel is trivial, since if

Mt(x1, . . . , xn) = ((1− t)x1, (1− t)x2 + tx1, (1− t)x3, (1− t)x4 + tx2, . . .) = 0

then we get x1 = 0, x2 = 0, . . .. Hence Mt is injective. Composing Mt with
g1 moves the image of g1 into the even-numbered coordinates and we have a
homotopy which is linear and injective on fibers

g1 = M0 ◦ g1 ∼M1 ◦ g1 =: g̃1.

Then we let

g̃t = (1− t)g̃0 + tg̃1.

The reason for composing with Lt and Mt is that g̃t is a map which is linear and
injective on fibers for each t, since g0 and g1 are linear and injective on fibers.
Overall we obtain homotopies which are linear and injective on fibers

g0 ∼ g̃0 ∼ g̃1 ∼ g1

as desired. This completes the proof of Theorem 12.1.

12.2. Universality reformulated. The statement of Theorem 12.1 is closely
related to the following two assertions which reformulate the universality of the
canonical bundle γk.

Theorem 12.4. For any k-dimensional bundle ξ over a paracompact base space
B there exists a bundle map f : ξ → γk.

Proof. We have seen in the previous proof that there is a map

g : E(ξ)→ R∞

which is linear and injective on the fibers of ξ and which is unique up to a
homotopy which is linear and injective on the fibers. Then we can define the the
bundle map f by

f(e) = (g(fiber in which e lies), g(e)).

�
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Two bundle maps F,G : ξ → γk are called bundle-homotopic if there exists a
one-parameter family of maps

Ht : ξ → γk, 0 ≤ t ≤ 1,

with H0 = F , H1 = G such that

H : E(ξ)× [0,1]→ E(γk)

is continuous as a function of both variables.

Theorem 12.5. Any two bundle maps from a k-dimensional bundle ξ to γk are
bundle-homotopic.

Proof. Let ξ be given by the map p : E → B. We know that a bundle map
F : ξ → γk determines a map

g : E(ξ)→ R∞

whose restriction to each fiber of ξ is linear and injective. Conversely, g determines
F by the identity

F (e) = (g(fiber in which e lies), g(e)).

Now suppose we have two bundle maps F0, F1 : ξ → γk and let f0, f1 : B → Grk
be the corresponding maps on base spaces. We have seen in Lecture 04 that the
bundle maps F0, F1 come equipped with isomorphisms ξ ∼= f ∗0 (γk) and ξ ∼= f ∗1 (γk).
Then we know from the proof of Theorem 12.1 that there is a homotopy gt between
g0 and g1 which induces a homotopy ft between f0 and f1. But the homotopy gt
also induces a bundle homotopy Ft between F0 and F1 by defining

Ft(e) := (gt(fiber in which e lies), gt(e)).

�

12.3. Universal characteristic classes. We can use the above results to re-
consider the concept of characteristic classes. For a k-dimensional vector bundle
ξ let fξ : B → Grk be a representative of the homotopy class corresponding to ξ
under the bijection of Theorem 12.1.

Now let R be any coefficient ring and let

c ∈ H i(Grk;R)

be any cohomology class. Then we get an induced class

c(ξ) := f ∗ξ (c) ∈ H i(B;R).

Definition 12.6. The class c(ξ) is called the characteristic cohomology class of
ξ determined by c.
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Note that the correspondence ξ 7→ c(ξ) is natural with respect to bundle maps,
i.e., it commutes with pullbacks.

Conversely, given any correspondence

ξ 7→ c(ξ) ∈ H i(B;R)

which is natural with respect to bundle maps, then we must have

c(ξ) = f ∗ξ c(γ
k).

Thus the above construction is the most general one. In other words:

Corollary 12.7. The ring consisting of all characteristic cohomology classes for
k-dimensional bundles over paracompact base spaces with coefficient ring R is
canonically isomorphic to the cohomology ring H∗(Grk;R).

Hence it is a very important task to compute the cohomology ring H∗(Grk;R).
For R = Z/2, we will do this in the next lecture.
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