
Math 231b
Lecture 14

G. Quick

14. Lecture 14: A cell decomposition for the Grassmannian

Recall from the previous lecture:

• Schubert symbols: sequences a = (a1, . . . , ak), with 0 ≤ a1 ≤ . . . ≤ ak. The
associated jump sequence is the sequence j = (j1, . . . , jk) with ji = ai + i.

• For given a, filtration 0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk ⊆ Rn+k with Hi := Rji .
• The Schubert variety Ωa = {V ∈ Grk(Rn+k)| dimV ∩ Hi ≥ i} associated

to a.
• The Schubert cell Ω0

a = Ωa −
⋃

a′≤a Ωa′ associated to a.

• We proved that the space Ω0
a is homeomorphic to R|a|, where we denote

|a| = a1 + . . .+ ak. We did this by showing that each V ∈ Grk(Rn+k) has
a special basis and the space of choices of those bases is a vector space of
dimension |a|.

We will use these notions and the above result to define a CW-decomposition
of the Grassmannian manifold. We still follow the notes by Mike Hopkins.

14.1. A CW-decomposition. To see that the Schubert cells serve as the cells
of a CW-decomposition, we need to define the characteristic maps. For each a
let Da ⊂ Vk(Rn+k) be the set of orthonormal sequences (v1, . . . , vk) satisfying

vi ∈ Hi

〈εi, vi〉 ≥ 0.

We define a map

sa : Da → Ωa

by sending (v1, . . . , vk) to the plane it spans.

Lemma 14.1. The map sa restricts to a homeomorphism of the interior of Da

with Ω0
a.

Proof. Let s0
a be the restriction of sa to the interior of Da. Let (v1, . . . , vk) be an

orthonormal frame on the boudnary of Da. Then

V := s0
a((v1, . . . , vk))
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does not belong to Ω0
a, for one of the vectors vi must have ji − 1th component

equal to 0. This implies
dim(V ∩ Rji−1) ≥ i,

since we have dim(V ∩ Rji) ≥ i. Hence V does not lie in Ω0
a, since for a k-plane

in Ω0
a the number ji is exactly the first dimension where V ∩ Rm has dimension

i. The construction of the previous lecture of the special basis for the planes in
Ω0

a then shows that s0
a is a bijection. It remains to show that s0

a and its inverse
are continuous. We leave this to the reader. �

The next result shows that the sa serve as characteristic maps for the cells in
the Grassmannian.

Proposition 14.2. The space Da is homeomorphic to the product

Da1
0 ×Da2

0 × . . .×D
ak
0 ,

in which each Dai
0 is the disk consisting of the unit vectors v ∈ Hi with the

properties
〈v, εji

〉 ≥ 0
〈v, εjt〉 = 0 for t < i.

Hence Da is homeomorphic to the disk Da1+···+ak .

Proof. For each unit vector v ∈ H1 with 〈εji
, v〉 ≥ 0, let Tv ∈ SO(n + k) be the

orthogonal transformation which rotates v to εj1 in the plane spanned by v and
εj1 , and which is the identity on the orthogonal complement of this plane. Note
that Tv restricts to an orthogonal transformation of Hi to itself since both v and
εji

are in Hi (H1 is a subspace of Hi), and has the property that Tv(εji
) = εji

for
i > 1, since both v and εj1 are orthogonal to εji

. We now use this transformation
T to define a homeomorphism

(1) Da → Da1
0 ×D

a′

1 ,

in which Da′

1 is the space of orthonormal sequences

(v′2, . . . , v
′
k)

with v′i ∈ Hi ∩ {εj1}⊥, and
〈εi, v′i〉 ≥ 0.

In other words, Da′

1 is the cell in Grk−1(Rn+k−1) associated to the sequence

a′ = (a2, . . . , ak),

in which we are regarding Rn+k−1 as the Euclidean space with basis

{εt|t 6= j1}.
Once we establish the homeomorphism (1), we are done by induction on k.
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The homeomorphism (1) is the map whose first component is the projection

(v1, . . . , vk) 7→ v1,

and whose second component is

(Tv1v2, . . . , Tv1vk),

so that

v′i = Tv1vi.

Since Tv1 is orthogonal, the sequence (v′2, . . . , v
′
k) is orthonormal. To verify the

conditions that the sequence be in Da′

1 , first note that for i > 1, we have

0 = 〈v1, vi〉 = 〈Tv1v1, Tv1vi〉 = 〈εj1 , Tv1vi〉,
and also

0 ≤ 〈εj1 , vi〉 = 〈Tv1εj1 , Tv1vi〉 = 〈εj1 , Tv1vi〉,
since εi is orthogonal to both εj1 and v1. The inverse homeomorphism is

(v1, v
′
2, . . . , v

′
k) 7→ (v1, T

−1
v1
v′2, . . . , T

−1
v1
v′k).

Reversing the above computations which checked the conditions shows that it

carries Da1
0 ×D

a′

1 to Da. �

Remark 14.3. a) There are

(
n+ k
k

)
cells in Grk(Rn+k). This is the number of

ways of choosing k distinct numbers ji with ji ≤ n+ k.
b) In particular, the number of r-cells in Grk(Rn+k) is equal to the number of
partitions of r into at most k integers ai each of which is ≤ n.
c) If k and n are ≥ r then the number of r-cells in Grk(Rn+k) is equal to the
number of partitions of r into at most k integers (zeroes in the beginning of the
sequence a are allowed).
d) The number of r-cells in Grk is equal to the number of partitions of r into at
most k integers.

Corollary 14.4. The maps

sa′ : Da′ → Ωa

with a′ ≤ a are the characteristic maps of the cells in a CW-decomposition of the
Schubert variety Ωa.

In the next lecture we will prove the following result.

Proposition 14.5. The cellular boundary map

dcell : Ccell
∗ (Ωa)⊗ Z/2→ Ccell

∗−1(Ωa)⊗ Z/2

is zero.
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Let xa be the homology class corresponding to the cellular cycle given by the
map sa. Then the above result implies the following fundamental fact.

Corollary 14.6. The classes

xa′ ∈ Ha′(Ωa; Z/2)

with a′ ≤ a form a basis for the homology groups, where |a| = a1 + . . .+ ak.

Before we prove these results, we look at some consequences. The picture below
lists the sequences a occurring in the cell decomposition of Gr2(R3+2). The reverse
of the partial ordering is indicated by an arrow, and the height corresponds to
the dimension of the cell: (Recall: The dimension of Gr2(R3+2) is 6, the Schubert
symbol (3, 3) has associated the maximal jump sequence (4,5) and corresponds
to a cell in dimension 3 + 3 = 6. The cell (0, 0) is in dimension zero.)

(3, 3)

��
(2, 3)

�� ##GGGGGGGG

(2, 2)

##GGGGGGGG
(1, 3)

�� ##GGGGGGGG

(1, 2)

�� ##GGGGGGGG
(0, 3)

��
(1, 1)

##GGGGGGGG
(0, 2)

��
(0, 1)

��
(0, 0)

By looking at this diagram we see that the homology satisfies Poincaré duality
in the sense that

dimHi(Gr2(R5)) = dimH6−i(Gr2(R5)).
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For instance, if we want the homology of Ω(1,3) we look at the position labeled
(1, 3), and everything below it

(1, 3)

�� ##GGGGGGGG

(1, 2)

�� ##GGGGGGGG
(0, 3)

��
(1, 1)

##GGGGGGGG
(0, 2)

��
(0, 1)

��
(0, 0)

We can see from the diagram that Ω(1,3) cannot satisfy Poincaré duality,

(2) dimHi(Ωa) = dimH|a|−i(Ωa).

Hence Ω(1,3) cannot be a manifold. Looking at the diagram, the only Schubert
varieties in Gr2(R5) which might be manifold are Ω(2,2) with

(2, 2)

##GGGGGGGG

(1, 2)

�� ##GGGGGGGG

(1, 1)

##GGGGGGGG
(0, 2)

��
(0, 1)

��
(0, 0)
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and Ω(0,i) with i ≤ 3 and

(0, 3)

��
(0, 2)

��
(0, 1)

��
(0, 0)

In fact, one can show that if the homology of Ωa satisfies Poincaré duality in the
sense of (2) then Ωa is homeomorphic to Gr`(Rm+`) for some pair (`,m) and so is
in fact a manifold. The point is that the Poincaré duality condition implies that
the Schubert symbol a must have exactly one immediate predecessor. (You will
be asked to prove this on the next Problem Set.)
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