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15. Lecture 15: The cohomology of the Grassmannian

Our first goal is to show the following result.

Proposition 15.1. The cellular boundary map

dcell : Ccell
∗ (Ωa)⊗ Z/2→ Ccell

∗−1(Ωa)⊗ Z/2
is zero.

Let xa be the homology class corresponding to the cellular cycle given by the
map sa : Da → Ωa defined in the previous lecture. Then the above result implies
the following fundamental fact.

Corollary 15.2. The classes

xa′ ∈ Ha′(Ωa; Z/2)

with a′ ≤ a form a basis for the homology groups, where |a| = a1 + . . .+ ak.

15.1. The flag varieties. The aim of this section is to prove Proposition 15.1.
Therefore, we start with an observation. Suppose that X is a CW-complex, M
is a closed manifold of dimension n, and f : M → X(n) is a map form M to the
n-skeleton of X. Let αM ∈ Hn(M ; Z/2) be the fundamental class. The image of
αM under the map

Hn(M)→ Hn(X(n))→ Hn(X(n), X(n−1)) = Ccell
n (X)

defines a cellular chain cM ∈ Ccell
n (X). In fact this chain is a cycle since it lies in

the image of Hn(X(n)) and so goes to zero under the first map in the factorization

Hn(X(n), X(n−1))→ Hn−1(X
n−1)→ Hn−1(X

(n−1), X(n−2))

of the cellular boundary map. In this way, maps of manifolds give homology
classes, and, in fact cycles in the complex of cellular chains.

We will need to be able to specify the cycle we constructed more precisely. If
the map

f : M → X ′ := X(n−1) ∪Dn
α ⊂ X(n),

and that for some point x in the interior of Dn
α there is a neighborhood U of x,

contained in the interior of Dn
α, with the property that the restriction of f is a

homeomorphism
f−1(U)→ U.
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In that case, the diagram

Hn(M)
≈ //

��

Hn(M,M − f−1(x))

≈
��

Hn(X ′) //Hn(X ′, X ′ − {x})
≈

��
Hn(Dn

α, S
n−1
α ) //Ccell

n (X)

shows that the cellular cycle cM is just the chain represented by the cell Dn
α. In

particular, one learns in this case that the cellular represented by Dn
α is, in fact,

a cycle. We will use these ideas to prove Proposition 15.1.

For each a, let

Fa ⊂ Gr1(H1)× · · · ×Grk(Hk)

be the subspace consisting of sequences (V1, . . . , Vk) with

V1 ⊂ V2 ⊂ · · · ⊂ Vk.

For some purposes it is useful to note that Fa can also be identified with the
space

Fa ⊂ P(H1)× · · · × P(Hk)

consisting of sequences of lines (`1, . . . , `k) which are pairwise orthogonal. There
is an obvious homeomorphism between these, under which Vj corresponds to
`1 ⊕ · · · ⊕ `j, and `j to the orthogonal complement of Vj−1 in Vj.

Proposition 15.3. The space Fa is a manifold.

Proof. The proof is very similar to the proof of Proposition 11.3. Let

(1) V1
//

��

V2

��

// · · · // Vk

��
H1

// H2
// · · · // Hk

be a point in Fa, and write Wi for the orthogonal complement of Vi in Hi. By
identifying Wi with the quotient space Hi/Vi, the Wi fit into a sequence

W1 → W2 → · · · → Wk.

(This sequence is not, in general, a sequence of monomorphisms.)

Let U ⊂ Fa be the open neighborhood of the point (1) consisting of sequences
(V ′1 ⊂ · · · ⊂ V ′k) with the property that for all i, V ′i ∩ Wi = {0}. For such a
sequence, we may think of V ′i as the graph of a homomorphism Vi → Wi. This
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correspondence gives a homeomorphism of U with the space of sequences of linear
maps Vi → Wi fitting into a diagram

V1
//

��

V2

��

// · · · // Vk

��
W1

// W2
// · · · // Wk

By choosing a basis {v1, . . . , vk} of Vk with vi ∈ Vi one can identify this space
with

W1 ⊕ · · · ⊕Wk.

Hence this is a vector space with of dimension

dimW1 + · · ·+ dimWk = a1 + · · ·+ ak.

�

Now let

fa : Fa → Ωa

be the map sending a sequence (V1, . . . , Vk) to Vk.

Proposition 15.4. The map

f−1
a (Ω0

a)→ Ω0
a

is a homeomorphism.

Proof. The inverse map sends V ∈ Ω0
a to the sequence (V1, . . . , Vk) in which

Vi = V ∩Hi. �

Now are finally ready to prove Proposition 15.1. The Schubert cell of Ωa has
one cell of dimension a1 + · · ·+ ak and all other cells of lower dimension. We just
proved that Fa is a manifold. Hence the argument described at the beginning of
this section applied to the map

Fa → Ωa,

shows that the corresponding chain is a cycle. This shows that the boundary
map dcell vanishes on the one cell in dimension |a|. All other elements in the
cell complex are given by maps from cells Da′

for a′ < a to Ωa. It follows from
the ordering of the Schubert cells and the definition of Schubert varieties that
the map sa′ : Da′ → Ωa factors through the map Ωa′ → Ωa. This shows that
the boundary map dcell actually vanishes on all elements in Ccell

∗ (Ω)⊗ Z/2. This
completes the proof of Proposition 15.1.



4

15.2. The cohomology ring H∗(Grk; Z/2). We will finally determine the co-
homology ring of the Grassmannian manifold Grk.

Theorem 15.5. The cohomology ring H∗(Grk; Z/2) is a polynomial algebra over
Z/2 freely generated by the Stiefel-Whitney classes w1(γ

k), . . . , wk(γ
k).

The idea of the proof is to show first that the Stiefel-Whitney classes of the
canonical bundle over Grk freely generate a polynomial algebra over Z/2 contained
in H∗(Grk; Z/2). Our knowledge about the cell structure of Grk then allows us
to show that H∗(Grk; Z/2) is actually equal to this polynomial algebra.

We start with the following lemma.

Lemma 15.6. There are no polynomial relations among the wi(γ
k).

Proof. Suppose that there is a relation of the form p(w1(γ
k), . . . , wk(γ

k)) = 0,
where p is a polynomial in k variables over Z/2. By the naturality of Stiefel-
Whitney classes, for any k-dimensional bundle ξ over a paracompact base space
there exists a bundle map g : ξ → γk. If we denote the induced map on base
spaces by ḡ we get

wi(ξ) = ḡ∗(wi(γ
k)).

It follows that the cohomology classes wi(ξ) must satisfy the corresponding rela-
tion

p(w1(ξ), . . . , wk(ξ)) = ḡ∗p(w1(γ
k), . . . , wk(γ

k)) = 0.

Thus to prove the lemma it suffices to find some k-dimensional bundle ξ such
that there are no polynomial relations among the classes w1(ξ), . . . , wk(ξ).

Let γ1 be the canonical line bundle over P∞ = Gr1. We know that H∗(P∞; Z/2)
is a polynomial algebra over Z/2 with one generator a of dimension one and
w(γ1) = 1 + a. Taking the k-fold product

X := P∞ × · · · × P∞,
it follows that H∗(X; Z/2) is a polynomial algebra on k generators a1, . . . , ak
of dimension one. Here ai can be defined as the image π∗i (a) induced by the
projection map

πi : X → P∞

to the ith factor. We define ξ to be the k-fold product

ξ = γ1 × · · · × γ1 ∼= (π∗1γ
1)⊕ · · · ⊕ (π∗kγ

1).

Then ξ is a k-dimensional bundle over X, and the total Stiefel-Whitney class

w(ξ) = π∗1(w(γ1)) · · · · · π∗k(w(γ1)) = (1 + a1)(1 + a2) · · · (1 + ak).

Hence wi(ξ) is the ith elementary symmetric function of a1, . . . , ak. It is a
well-known theorem in algebra that the k elementary symmetric functions in
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k variables over a field do not satisfy any polynomial relations. Thus the classes
w1(ξ), . . . , wk(ξ) are algebraically independent over Z/2, and it follows that the
w1(γ

k), . . . , wk(γ
k). �

Now let us turn to the proof of Theorem 15.5. By the previous lemma, we
know that H∗(Grk; Z/2) contains a polynomial algebra over Z/2 freely generated
by w1(γ

k), . . . , wk(γ
k). We will show that H∗(Grk; Z/2) actually coincides with

this sub-algebra.

We know from the discussion of the cell discussion of Grk is equal to the number
of partitions of r into at most k integers. Hence the dimension of Hr(Grk; Z/2)
is at most equal to this number of partitions. On the other hand, we claim that
the number of distinct monomials of the form

w1(γ
k)r1 · · ·wk(γk)rk

in Hr(Grk; Z/2) is also precisely equal to the number of partitions of r into at
most k integers. For to each sequence r1, . . . , rk of non-negative integers with

(2) r1 + 2r2 + · · ·+ krk = r

we can associate the partition of r which is obtained from the k-tuple

(3) rk, rk + rk−1, . . . , rk + rk−1 + · · ·+ r1

by deleting any zeros which may occur. Conversely, to a partition (3) corresponds
a sequence r1, . . . , rk of non-negative integers satisfying (2).

Since Z/2[w1(γ
k), . . . , wk(γ

k)] is a sub-algebra of H∗(Grk; Z/2), comparing the
degrees and dimensions proves the theorem.
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