Math 231b Lecture 16

G. Quick

16. Lecture 16: Chern classes for complex vector bundles

16.1. **Orientations.** From now on we will shift our focus to complex vector bundles. Much of the theory for real vector bundles carries over to the complex case. But there are a couple of important features of complex bundles. The first one is that the complex structure induces an orientation of the underlying real bundle.

Lemma 16.1. Let ω be a complex vector bundle. Then the underlying real vector bundle $\omega_{\mathbb{R}}$ has a canonical preferred orientation.

Proof. Let V be a finite dimensional complex vector space. Choosing a basis a_1, \ldots, a_n for V over \mathbb{C} , gives us a real basis for the underlying real vector space $V_{\mathbb{R}}$:

$$a_1, ia_1, a_2, ia_2, \ldots, a_n, ia_n$$
.

We claim that this ordered basis determines the required orientation for $V_{\mathbb{R}}$. For if b_1, \ldots, b_n is any other complex basis of V, then there is a matrix $A \in \mathrm{GL}_n(\mathbb{C})$ which transforms the first basis into the second. This deformation does not alter the orientation of the real vector space, since if $A \in \mathrm{GL}_n(\mathbb{C})$ is the coordinate change matrix, then the underlying real matrix $A_{\mathbb{R}} \in \mathrm{GL}_{2n}(\mathbb{R})$ has determinant

$$\det A_{\mathbb{R}} = |\det A|^2 > 0.$$

Hence $A_{\mathbb{R}}$ preserves the orientation of the underlying real vector space. Another way to see this is to note that $GL_n(\mathbb{C})$ is connected. Hence we can pass from any given complex basis to any other basis by a continuous deformation, and this continuous deformation cannot alter the orientation.

Now if ω is a complex vector bundle, then applying this construction to every fiber of ω yields the required orientation for $\omega_{\mathbb{R}}$, since overlapping trivializations determine a section in $\mathrm{GL}_n(\mathbb{C})$.

Remark 16.2. As a consequence, every complex manifold is oriented, since an orientation of the tangent bundle of a manifold induces an orientation of the manifold itself.

16.2. Chern classes. Chern classes for complex vector bundles can be characterized by almost the same set of axioms as Stiefel-Whitney classes.

Theorem 16.3. There is a unique sequence of functions c_1, c_2, \ldots assigning to each complex vector bundle $E \to B$ over a a space B a class $c_i(E) \in H^{2i}(B; \mathbb{Z})$, depending only on the isomorphism type of E, such that

- a) $c_i(f^*E) = f^*(c_i(E))$ for a pullback along a map $f: B' \to B$ which is covered by a bundle map.
- b) $c(E_1 \oplus E_2) = c(E_1)c(E_2)$ where $c = 1 + c_1 + c_2 + \ldots \in H^*(B; \mathbb{Z}/2)$.
- c) $c_i(E) = 0 \text{ if } i > \dim E$.
- d) For the canonical complex line bundle γ_1^1 on $\mathbb{C}P^{\infty}$, $c_1(\gamma_{\infty}^1)$ is a specified generator of $H^2(\mathbb{C}P^{\infty}; \mathbb{Z})$.

Proof. The proof is almost the same as for the existence and uniqueness of Stiefel-Whitney classes with \mathbb{Z} -coefficients and $H^*(\mathbb{C}\mathrm{P}^\infty;\mathbb{Z})=\mathbb{Z}[\alpha]$. The bundle E induces a map $g\colon E\to\mathbb{C}^\infty$ which is linear and injective on fibers. Define $x\in H^2(E;\mathbb{Z})$ to be the element $\mathbb{C}\mathrm{P}(g)^*(\alpha)$. The Leray-Hirsch theorem applied to the fiber bundle $\mathbb{C}\mathrm{P}(E)\to B$ then implies that the elements $1,x,\ldots,x^{n-1}$ form a basis of $H^*(\mathbb{C}\mathrm{P}(E);\mathbb{Z})$ as an $H^*(B;\mathbb{Z})$ -module. Since we are using \mathbb{Z} coefficients instead of $\mathbb{Z}/2$ signs do matter now. We modify the defining relation for the Chern classes to be

$$x^{n} - c_{1}(E)x^{n-1} + \dots + (-1)^{n}c_{n}(E) = 0$$

with alternating signs. The sign change does not affect the proofs of properties a)-c). For d), the sign convention turns the defining relation of $c_1(\gamma^1)$ into

$$x - c_1(\gamma^1) = 0$$

with $x = \alpha$. Thus $c_1(\gamma^1)$ is the chosen generator of $H^2(\mathbb{C}P^\infty; \mathbb{Z})$ (and not minus the generator).

Proposition 16.4. Regarding an n-dimensional complex vector bundle $E \to B$ as a 2n-dimensional real vector bundle, then $w_{2i+1}(E) = 0$ and $w_{2i}(E)$ is the image of $c_i(E)$ under the homomorphism $H^{2i}(B; \mathbb{Z}) \to H^{2i}(B; \mathbb{Z}/2)$.

Proof. There is a natural map $p: \mathbb{RP}(E) \to \mathbb{CP}(E)$ sending a real line to the complex line containing it. This projection fits into a commutative diagram

$$\mathbb{R}P^{2n-1} \longrightarrow \mathbb{R}P(E) \xrightarrow{\mathbb{R}P(g)} \mathbb{R}P^{\infty}$$

$$\downarrow \qquad \qquad \downarrow^{p} \qquad \qquad \downarrow$$

$$\mathbb{C}P^{n-1} \longrightarrow \mathbb{C}P(E) \xrightarrow{\mathbb{C}P(g)} \mathbb{C}P^{\infty}$$

where the left vertical map is the restriction of p to a fiber of E and the maps $\mathbb{R}P(g)$ and $\mathbb{C}P(g)$ are the projectivizations of a map $g\colon E\to\mathbb{C}^\infty$ which is injective and \mathbb{C} -linear on the fibers of E. All three vertical maps are fiber bundles with fiber $\mathbb{R}P^1$, the real lines in a complex line (using $\mathbb{C}\cong\mathbb{R}$). The Leray-Hirsch theorem applies to the bundle $\mathbb{R}P^\infty\to\mathbb{C}P^\infty$, so if α is the generator of $H^2(\mathbb{C}P^\infty;\mathbb{Z})$, the $\mathbb{Z}/2$ -reduction $\bar{\alpha}\in H^2(\mathbb{C}P^\infty;\mathbb{Z}/2)$ pulls back to a generator of $H^2(\mathbb{R}P^\infty;\mathbb{Z}/2)$. This generator is β^2 , the square of the generator $\beta\in H^1(\mathbb{R}P^\infty;\mathbb{Z}/2)$. Hence the $\mathbb{Z}/2$ -reduction

$$\bar{x}_{\mathbb{C}}(E) = \mathbb{C}P(g)^*(\bar{\alpha}) \in H^2(\mathbb{C}P(E); \mathbb{Z}/2)$$

of the class $x_{\mathbb{C}}(E) = \mathbb{C}P(g)^*(\alpha)$ pulls back to the square of the class

$$x_{\mathbb{R}}(E) = \mathbb{R}P(g)^*(\alpha) \in H^1(\mathbb{R}P(E); \mathbb{Z}/2).$$

Thus the $\mathbb{Z}/2$ -reduction of the defining relation for the Chern classes of E, which is

$$\bar{x}_{\mathbb{C}}(E)^n + \bar{c}_1(E)\bar{x}_{\mathbb{C}}(E)^{n-1} + \dots + \bar{c}_n(E) = 0,$$

(signs do not matter here since we are over $\mathbb{Z}/2$) pulls back to the relation

$$x_{\mathbb{R}}(E)^{2n} + \bar{c}_1(E)x_{\mathbb{R}}(E)^{2(n-1)} + \dots + \bar{c}_n(E) = 0,$$

which is the defining relation for the Stiefel-Whitney classes of E. Hence we must have

$$w_{2i+1}(E) = 0$$
 and $w_{2i}(E) = \bar{c}_i(E)$.

16.3. The complex Grassmannian and its cohomology. The complex Grassmannian $Gr_k(\mathbb{C}^{n+k})$ is the space of complex k-planes in \mathbb{C}^{n+k} . We can topologize this space just as in the real case and we obtain a complex manifold of complex dimension kn or real dimension 2kn. For k = 1, we get $Gr_1(\mathbb{C}^{n+1}) = \mathbb{C}P^n$.

Moreover, the inclusions $\mathbb{C}^{n+k} \subset \mathbb{C}^{n+1+k} \subset \dots$ induce inclusions

$$\operatorname{Gr}_k(\mathbb{C}^{n+k}) \subset \operatorname{Gr}_k(\mathbb{C}^{n+1+k}) \subset \dots$$

The infinite complex Grassmannian manifold is the union

$$\operatorname{Gr}_k(\mathbb{C}) := \operatorname{Gr}(\mathbb{C}^{\infty}) = \bigcup_n \operatorname{Gr}_k(\mathbb{C}^{n+k}).$$

This is the set of all k-dimensional complex vector subspaces of \mathbb{C}^{∞} . The topology of $\operatorname{Gr}_k(\mathbb{C})$ is the direct limit topology. We have $\operatorname{Gr}_1(\mathbb{C}) = \mathbb{C}P^{\infty}$.

The complex Grassmannian $\operatorname{Gr}_k(\mathbb{C}^{n+k})$ is equipped with a canonical k-dimensional complex vector bundle $\gamma^k(\mathbb{C}^{n+k})$ defined as in the real case. The total space

$$E = E(\gamma^k(\mathbb{C}^{n+k}))$$

is the set of all pairs

(complex k-plane in \mathbb{C}^{n+k} , vector in that k-plane).

The topology on E is the topology as a subset of $\operatorname{Gr}_k(\mathbb{C}^{n+k}) \times \mathbb{C}^{n+k}$. The projection map

$$\pi \colon E \to \operatorname{Gr}_k(\mathbb{C}^{n+k})$$
, is defined by $\pi(V, v) = V$,

and the vector space structure is defined by

$$t_1(V, v_1) + t_2(V, v_2) = (V, t_1v_1 + t_2v_2).$$

Over the infinite complex Grassmannian $Gr_k(\mathbb{C})$, there is also a canonical bundle $\gamma_{\mathbb{C}}^k$ whose total space is

$$E(\gamma_{\mathbb{C}}^k) \subset \operatorname{Gr}_k(\mathbb{C}) \times \mathbb{C}^{\infty}$$

the set of all pairs

(complex k-plane in \mathbb{C}^{∞} , vector in that k-plane)

topologized as a subset of the product $Gr_k(\mathbb{C}) \times \mathbb{C}^{\infty}$. The projection

$$\pi \colon E(\gamma_{\mathbb{C}}^k) \to \operatorname{Gr}_k(\mathbb{C})$$

is given by $\pi(V, v) = V$.

The crucial result is again the following theorem.

Theorem 16.5. For a paracompact space B, the map $[B, \operatorname{Gr}_k(\mathbb{C})] \to \operatorname{Vect}^k_{\mathbb{C}}(B)$, $[f] \mapsto f^*(\gamma^k)$, is a bijection from the set of homotopy classes of maps $B \to \operatorname{Gr}_k(\mathbb{C})$ and the set of isomorphism classes of k-dimensional complex vector bundles.

The proof is the same as for real bundles. The theorem justifies to call the infinite complex Grassmannian $Gr_k(\mathbb{C})$ the classifying space and $\gamma_{\mathbb{C}}^k$ the universal bundle for k-dimensional complex vector bundles.

The complex Grassmannian $Gr_k(\mathbb{C})$ is a CW-complex with one cell of dimension 2n corresponding to each partition of n into at most k integers.

Theorem 16.6. The cohomology ring $H^*(Gr_k(\mathbb{C}); \mathbb{Z})$ is a polynomial algebra over \mathbb{Z} freely generated by the Chern classes $c_1(\gamma_{\mathbb{C}}^k), \ldots, c_k(\gamma_{\mathbb{C}}^k)$.

Proof. Just work out the proof for the real Grassmannian in the complex case. \Box