
Math 231b
Lecture 16

G. Quick

16. Lecture 16: Chern classes for complex vector bundles

16.1. Orientations. From now on we will shift our focus to complex vector
bundles. Much of the theory for real vector bundles carries over to the complex
case. But there are a couple of important features of complex bundles. The first
one is that the complex structure induces an orientation of the underlying real
bundle.

Lemma 16.1. Let ω be a complex vector bundle. Then the underlying real vector
bundle ωR has a canonical preferred orientation.

Proof. Let V be a finite dimensional complex vector space. Choosing a basis
a1, . . . , an for V over C, gives us a real basis for the underlying real vector space
VR:

a1, ia1, a2, ia2, . . . , an, ian.

We claim that this ordered basis determines the required orientation for VR. For
if b1, . . . , bn is any other complex basis of V , then there is a matrix A ∈ GLn(C)
which transforms the first basis into the second. This deformation does not alter
the orientation of the real vector space, since if A ∈ GLn(C) is the coordinate
change matrix, then the underlying real matrix AR ∈ GL2n(R) has determinant

detAR = | detA|2 > 0.

Hence AR preserves the orientation of the underlying real vector space. Another
way to see this is to note that GLn(C) is connected. Hence we can pass from
any given complex basis to any other basis by a continuous deformation, and this
continuous deformation cannot alter the orientation.

Now if ω is a complex vector bundle, then applying this construction to every
fiber of ω yields the required orientation for ωR, since overlapping trivializations
determine a section in GLn(C). �

Remark 16.2. As a consequence, every complex manifold is oriented, since an
orientation of the tangent bundle of a manifold induces an orientation of the
manifold itself.
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16.2. Chern classes. Chern classes for complex vector bundles can be charac-
terized by almost the same set of axioms as Stiefel-Whitney classes.

Theorem 16.3. There is a unique sequence of functions c1, c2, . . . assigning to
each complex vector bundle E → B over a a space B a class ci(E) ∈ H2i(B;Z),
depending only on the isomorphism type of E, such that

a) ci(f
∗E) = f ∗(ci(E)) for a pullback along a map f : B′ → B which is

covered by a bundle map.
b) c(E1 ⊕ E2) = c(E1)c(E2) where c = 1 + c1 + c2 + . . . ∈ H∗(B;Z/2).
c) ci(E) = 0 if i > dimE.
d) For the canonical complex line bundle γ11 on CP∞, c1(γ

1
∞) is a specified

generator of H2(CP∞;Z).

Proof. The proof is almost the same as for the existence and uniqueness of Stiefel-
Whitney classes with Z-coefficients and H∗(CP∞;Z) = Z[α]. The bundle E
induces a map g : E → C∞ which is linear and injective on fibers. Define x ∈
H2(E;Z) to be the element CP(g)∗(α). The Leray-Hirsch theorem applied to the
fiber bundle CP(E) → B then implies that the elements 1, x, . . . , xn−1 form a
basis of H∗(CP(E);Z) as an H∗(B;Z)-module. Since we are using Z coefficients
instead of Z/2 signs do matter now. We modify the defining relation for the
Chern classes to be

xn − c1(E)xn−1 + · · ·+ (−1)ncn(E) = 0

with alternating signs. The sign change does not affect the proofs of properties
a)-c). For d), the sign convention turns the defining relation of c1(γ

1) into

x− c1(γ1) = 0

with x = α. Thus c1(γ
1) is the chosen generator of H2(CP∞;Z) (and not minus

the generator). �

Proposition 16.4. Regarding an n-dimensional complex vector bundle E → B
as a 2n-dimensional real vector bundle, then w2i+1(E) = 0 and w2i(E) is the
image of ci(E) under the homomorphism H2i(B;Z)→ H2i(B;Z/2).

Proof. There is a natural map p : RP(E) → CP(E) sending a real line to the
complex line containing it. This projection fits into a commutative diagram

RP2n−1

��

// RP(E)

p

��

RP(g)
// RP∞

��
CPn−1 // CP(E)

CP(g)
// CP∞
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where the left vertical map is the restriction of p to a fiber of E and the maps
RP(g) and CP(g) are the projectivizations of a map g : E → C∞ which is injective
and C-linear on the fibers of E. All three vertical maps are fiber bundles with fiber
RP1, the real lines in a complex line (using C ∼= R). The Leray-Hirsch theorem
applies to the bundle RP∞ → CP∞, so if α is the generator of H2(CP∞;Z), the
Z/2-reduction ᾱ ∈ H2(CP∞;Z/2) pulls back to a generator of H2(RP∞;Z/2).
This generator is β2, the square of the generator β ∈ H1(RP∞;Z/2). Hence the
Z/2-reduction

x̄C(E) = CP(g)∗(ᾱ) ∈ H2(CP(E);Z/2)

of the class xC(E) = CP(g)∗(α) pulls back to the square of the class

xR(E) = RP(g)∗(α) ∈ H1(RP(E);Z/2).

Thus the Z/2-reduction of the defining relation for the Chern classes of E, which
is

x̄C(E)n + c̄1(E)x̄C(E)n−1 + · · ·+ c̄n(E) = 0,

(signs do not matter here since we are over Z/2) pulls back to the relation

xR(E)2n + c̄1(E)xR(E)2(n−1) + · · ·+ c̄n(E) = 0,

which is the defining relation for the Stiefel-Whitney classes of E. Hence we must
have

w2i+1(E) = 0 and w2i(E) = c̄i(E).

�

16.3. The complex Grassmannian and its cohomology. The complex Grass-
mannian Grk(Cn+k) is the space of complex k-planes in Cn+k. We can topologize
this space just as in the real case and we obtain a complex manifold of complex
dimension kn or real dimension 2kn. For k = 1, we get Gr1(Cn+1) = CPn.

Moreover, the inclusions Cn+k ⊂ Cn+1+k ⊂ . . . induce inclusions

Grk(Cn+k) ⊂ Grk(Cn+1+k) ⊂ . . .

The infinite complex Grassmannian manifold is the union

Grk(C) := Gr(C∞) =
⋃
n

Grk(Cn+k).

This is the set of all k-dimensional complex vector subspaces of C∞. The topology
of Grk(C) is the direct limit topology. We have Gr1(C) = CP∞.

The complex Grassmannian Grk(Cn+k) is equipped with a canonical k-dimensional
complex vector bundle γk(Cn+k) defined as in the real case. The total space

E = E(γk(Cn+k))



4

is the set of all pairs

(complex k-plane in Cn+k, vector in that k-plane).

The topology on E is the topology as a subset of Grk(Cn+k)×Cn+k. The projec-
tion map

π : E → Grk(Cn+k), is defined by π(V, v) = V,

and the vector space structure is defined by

t1(V, v1) + t2(V, v2) = (V, t1v1 + t2v2).

Over the infinite complex Grassmannian Grk(C), there is also a canonical bun-
dle γkC whose total space is

E(γkC) ⊂ Grk(C)× C∞

the set of all pairs

(complex k-plane in C∞, vector in that k-plane)

topologized as a subset of the product Grk(C)× C∞. The projection

π : E(γkC)→ Grk(C)

is given by π(V, v) = V .

The crucial result is again the following theorem.

Theorem 16.5. For a paracompact space B, the map [B,Grk(C)] → VectkC(B),
[f ] 7→ f ∗(γk), is a bijection from the set of homotopy classes of maps B → Grk(C)
and the set of isomorphism classes of k-dimensional complex vector bundles.

The proof is the same as for real bundles. The theorem justifies to call the
infinite complex Grassmannian Grk(C) the classifying space and γkC the universal
bundle for k-dimensional complex vector bundles.

The complex Grassmannian Grk(C) is a CW-complex with one cell of dimension
2n corresponding to each partition of n into at most k integers.

Theorem 16.6. The cohomology ring H∗(Grk(C);Z) is a polynomial algebra over
Z freely generated by the Chern classes c1(γ

k
C), . . . , ck(γkC).

Proof. Just work out the proof for the real Grassmannian in the complex case. �
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