Math 231b
Lecture 18

G. Quick

18. LECTURE 18: COMPLEX K-THEORY AS A REPRESENTABLE FUNCTOR

We postpone the proof of the periodicity theorem for a while and first workout
more properties of the K-theory functor.

18.1. Reduced K-theory. Let X be a compact Hausdorff space. Recall that a
vector bundle over X may have different dimensions on the connected components
of X. If X is a based space, i.e., has a chosen base point * € X, then we can
define a function
d: Vect(X) — Z

that sends a vector bundle to the dimension of its restriction to the component
of the basepoint *. The function d is a homomorphism of semirings and hence
induces a dimension function

d: K(X) — Z,
which is a homomorphism of rings. Since d is an isomorphism when X is a point,
d can be identified with the induced map

K(X) — K(x).
This leads to the following definition.

Definition 18.1. The reduced K-theory K(X) of a based space is the kernel of
d: K(X) — Z.

Remark 18.2. K(X) is an ideal of K(X) and thus a ring without identity. It
clearly holds B
K(X)=2 K(X)xZ.
If X does not have a base point yet, let
X, =X«

be X together with a disjoint base point. Then we have

K(X) 2 K(X,).

We denote the stable equivalence class of a bundle ¢ by {{} and the set of
stable equivalence classes of finite dimensional complex vector bundles over X
by EU(X). The set EU(X) forms an abelian group under direct sums, since we

know that for each bundle & there is bundle £’ such that £ & & is trivial.
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K(X).

L

Proposition 18.3. There is a natural isomorphism of groups EU(X)

Proof. Denote the class of the trivial n-dimensional bundle €” over X by n. Then
we know that every element in K (X) can be written in the form [£] — ¢ for some
vector bundle £ and some non-negative integer q. Then we can define the required
homomorphism by

{&} = [¢] — d(¢).
It is clear that this map is surjective and it is injective, since we know from the
previous lecture that [£] = [n] if and only if {{} = {n}. O

18.2. Complex K-theory as a representable functor. Let Gr,(C) be the
infinite dimensional complex Grassmannian manifold of complex n-planes. It is
also common to write

BU(n) := Gr,(C).
We know from Lecture 16 that there is a natural bijection
Vect¢(X) = [X, BU(n)]

where [—,—] denotes homotopy classes of maps. As we have just seen base points
can play a role for studying K-theory (as for any other cohomology theory). Let
[—,—]« denote the set of homotopy classes of basepoint preserving maps. Then
we have

Vectd(X) = [ X4, BU(n)..
The map V — C & V defines an inclusion
in: BU(n) — BU(n+ 1),
and we denote the colimit by
BU := colim BU(n)
with the direct limit (or union) topology.

Recall that a space is nondegenerately based, or well-pointed, if the inclusion of
its basepoint is a cofibration.!

'A map i: A — X is a cofibration if for any commutative diagram of the form

A—"syl

|

X ——>Y

there exists an h: X — Y that makes the diagram commute.
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Theorem 18.4. We endow Z with the discrete topology. For any compact space
X, there is a natural isomorphism

K(X) = [X,BU x Z)..
For a nondegenerately based compact space X, there is a natural isomorphism

K(X) = [X,BU x Z),.

Proof. When X is connected and £ is an n-dimensional bundle over X with as-
sociated classifying map

fe: X — BU(n) C BU,
the first isomorphism sends

€] — q to the pair (fe,n —q).

(Note that since Z is discrete, the map X — Z must be constant.) Then we
obtain also an isomorphism for non-connected spaces since both functors K (—)
and [—,BU x ZJ. send disjoint unions to cartesian products.

For the second isomorphism follows from the first. For let S° — X, be the

cofibration induced by the basepoint and the disjoint basepoint. Then we can
identify d: K(X) — Z with the induced map

(X, BU x 7], — [S°, BU x 7J,.

Hence we need to show that the kernel of this map is [ X, BU xZ].. The cofibration
SY — X, with X, /S = X induces an exact sequence

[S'AS° BU x Z), — [X, BU x Z], — [ X4, BU x 7], — [S°, BU x Z],.

The left hand set is equal to [S', BU x Z],. Since we are looking at basepoint
preserving maps, this is just [S*,BU], = m;(BU). Hence we need to show that
7 (BU) is trivial or in other words that BU is simply connected. But 7, (BU) is
isomorphic to the set of isomorphism classes of complex vector bundles over S?.
We will show on the next problem set that this set is trivial. O

For more general, non-compact, spaces it is best to define K-theory to be the
functor represented by the space BU x Z.

Definition 18.5. For a space X of the homotopy type of a CW-complex, we
define

K(X) :=[X,,BU x Z]..
For a nondegenerately based space X of the homotopy type of a CW-complex,

we define )
K(X) = [X,BU x Z)..



When X is compact, we know that K(X) is a ring. The following result shows
that is also true for more general spaces.

Proposition 18.6. The space BU X Z is a ring space up to homotopy. This
means that there are additive and multiplicative structures on BU X 7 such that
the associativity, commutativity, and distributivity diagrams required of a ring
commute up to homotopy.

Idea of the proof. For the additive structure, note that taking direct sums induces
maps for each m and n

Grp(C) X Gr,(C®) — Gryppn (C* @ C=.
After choosing an isomorphism C* @ C*>® = C* we get a map
BU(m) x BU(n) — BU(m + n).
Taking colimits over m and n then yields a map
@: BU x BU — BU.

This map is associative and commutative up to homotopy. The zero-dimensional
plane provides a basepoint which is a zero element up to homotopy. Using the
ordinary addition on Z, we obtain the additive H-space structure on BU X Z.
For multiplication, taking the tensor product of the canonical bundles induces a
homotopy class of classifying maps

BU(m) x BU(n) — BU(mn).

With a lot more effort than for direct sums, one can show that these maps pass
to colimits and define a multiplicative H-space structure on BU x Z. O
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