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19. LECTURE 19: COMPLEX K-THEORY AS A COHOMOLOGY THEORY

19.1. K-theory as a cohomology theory. Let C be the category of compact
Hausdorff spaces, C* be the category of compact Hausdorff spaces with a distin-
guished basepoint, and C? the category of pairs. We have defined K-theory as
functors K on C and K on C*. We extend it a functor on C? by defining

K(X)Y):=K(X/Y)
for any pair of compact spaces (X,Y).

Definition 19.1. For n > 0, we define functors by

K™X) = K(5"X)=K(S"AX) for X € C*
K™X)Y) = K™X/Y)=K(S"X/Y)) for (X)Y)e (>
K™X) = K™Xp0)=K(S"X,)) forXeC

which are contravariant on the appropriate categories.

Lemma 19.2. For (X,Y) € C? we have an exact sequence
K(XY) 5 K(X) S K(Y)

where i: Y — X and j: (X, — (X,Y) are the inclusions.

Proof. We could apply the representability of K-theory of the previous lecture.
But there is a very nice direct way to prove the lemma:
The composition ¢*j* is induced by the composition

joi: (Y,0) = (X\)Y)

and so factors through the zero group K (Y)Y). Thus i*j* = 0. Suppose now that
a € Ker(i*). We may represent « in the form [{] — n where £ is a vector bundle
over X. Since i*(a) = 0 it follows that

€]Y]=nin K(Y).
This implies that for some integer m we have

(oMY =" @€,
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i.e., we have a trivialization h of (£ @ €¢™)|Y". This defines a bundle (£ & €™)/h on
X/Y in the following way. The total space is the quotient of the total space of
& @ €™ modulo the relation

R (y,v) ~ h™ 1y w) for y,y €,

and the projection is just the induced quotient map. We omit the details to show
that this projection map staisfies local triviality. So we can define an element

o =[E@em/h] — " @M € K(X)Y) = K(X,)Y).

Then
@) = [f@e]—[" @€
= [E]-n=¢
Thus « is in the image of j* and we have Ker(i*) = Im(j*), which proves the
exactness. O

Corollary 19.3. For (X)Y) € C?> andY € C* (hence X € CT by taking the same
basepoint yo € X ) the sequence

K(XY)5S K(X) S K(®Y)

18 exact.

Proof. This follows from the previous lemma and the natural isomorphisms

K(X) = K(X) @ K(y)

and )

K(Y) = K(Y)® K(yo)-
O

Proposition 19.4. For (X)Y) € C? there is a natural exact sequence which
extends infinitely to the left

S KPS KXY S KOS K(Y) S KOXY) D KOX) D KOY).

Proof. it suffices to show the exactness only for the sequence with terms of degree
—1 and 0. Once we have done that we cann apply suspensions and extend the
sequence to the left.

Let C and S denote cone and suspension respectively. Then we the following
sequence of maps

Y =& X < XUlY <= (XUCY)uCX — (XulY)uCxX)ucCc(Xucy)
g \ \
X/Y SY SX

The vertical maps are the quotient maps obtained by collapsing the most recently
attached cone to a point. Now we successicely apply Corollary 19.3 to the pairs
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(XUCY,X), (CUCY)U(CX),XUCY),and ((XUCY)UCX), ((XuCY)uU
CX)UuC(XUCY)). We start with the pair (X UCY, X). By Corollary 19.3 we
get an exact sequence

K(Xucy,Xx) ™S K(xucy) S B(x).

Since C'Y is contractible, this implies by Lemma 19.6 below that
P K(X/Y) = K(XUCY)

is an isomorphism. The composition k*p* coincides with j7*. Let

0: K(XUCY,X)—= K YY)=K(S'A\Y,)
be the isomorphism induced by the homeomorphisms

(XUCY)/ X =CY]Y =~ S'AY,.
Then defining
§: K'(Y)— K(X,Y) by §d =m*0~*

we obtain a diagram

* ~

J

K(X)Y) (X)

Lg_l | |

K(XUCY,X) ™+ K(XUCY) Y~ K(X)

where the vertical maps are isomorphisms/identities. Hence we obtain the exact
sequence

ENY) S K(XY) LS K(X).
Applying the same sort of arguments to the remaining pairs yields the remaining
exactness (though it is a bit more complicated than the previous case). 0J

Example 19.5. In particular, we see that if X is the wedge sum A V B, then
X/A = B and the sequence breaks up into split short exact sequences. This
implies

K(X)= K(A) @ K(B).
Lemma 19.6. Let Y C X be closed contractible subspace. Then the quotient
map q: X — X/Y induces a bijection

q*: Vecte(X/Y) — Vecte(X).

Proof. Let p: E — X be a bundle over X. Since Y is contractible, E|Y is trivial.
Thus there is a trivialization h

h: ElY =Y xC".



4

Moreover, two such trivializations differ by an automorphism of Y x C”, i.e., by
a map ¥ — GL,(C). But GL,(C) is connected and V is contractible. Thus
h is unique up to homotopy and so the isomorphism class of E/h is uiquely
determined by that of E. Thus we have constructed a map

Vecte(X) — Vecte(X/Y)

and this is a two-sided inverse for ¢*. OJ

This shows that the complex K-theory functor behaves very much like the sin-
gular cohomology functor. In fact, complex K-theory defines a complex oriented
cohomology theory.

19.2. Bott periodicity for K. We want a version of the periodicity theorem
for the reduced groups too. We start with the following observation.

Lemma 19.7. For nondegenerately based spaces X and Y, the projections of
X XY on X and Y and the quotient map X XY — X AY induce a natural
1somorphism

KXAY)e K(X)a K(Y)2K(X xY).
The group K(X AY) is the kernel of the map
K(XxY)= KX)®K(®Y)
induced by the inclusions of X andY into X x Y.

Proof. The inclusions and projections make X and Y into retracts of X x Y. This
implies that the map

K(XxY)—= KX)®K(®Y)
induced by the inclusions is a split surjection with splitting
K(X)® K(Y) = K(X xY), (a,b) = pi(a) + p3(b)

where p; and ps are the projections. The inclusion X VY — X xY is a cofibration
by our assumption on X and Y. The quotient of this map is X AY. This
cofibration induces an exact sequence

KXAY)=5 K(XxY)—=>K(XVY).

Since we have

K(XVY)2K(X)® K(Y)

this proves the lemma. O



Lemma 19.8. The Kinneth map
p: K(X)@ K(Y) - K(X xY)
defined by
pla ®b) = (pra)(p3b),
where py and py are the projections onto the two factors, induces a reduced map

i K(X)® K(Y) = K(X AY).

Proof. For: Let xp € X and yy € Y be the basepoints, and let a € f((X) =
Ker(K(X) — K(z)) and b € K(Y) = Ker(K(Y) — K(yo)). Then p’a restricts
to zero in K (Y') and pib restricts to zero in K (X). Hence the product (pia)(pib) €
K(X xY) restricts to zero in both K(X) and K(Y') and hence in K(X VY). In
particular, (pia)(pib) lies in K (X x Y). Now Lemma 19.7 implies that (pia)(pib)
pulls back to a unique element in K (X AY). This defines the reduced Kiinneth
map fi. 0

We have a reduced splitting
KX)o KY)2KX) o KY)® K(X)d K(Y)®Z,

which is compatible with the splitting of Lemma 19.7 and shows that the reduced
Kiinneth map is a ring homomorphism.

The unreduced version of the periodicity theorem of the previous lecture now
implies the following reduced version.

Theorem 19.9. For nondegenerately based compact spaces X, the map
fi: K(X)® K(S?) = K(X AS?)

s an isomorphism.

Let H* be the canonical line bundle over CP* = S? and H be its dual. We

know from the previous lecture
K(S*) = Z[H]|/(([H] - 1)%),
and hence .
K(S5?) is the ideal Z([H] — 1).
Then Theorem 19.9 implies the following version of Bott periodicity.
Theorem 19.10 (Bott periodicity). For nondegenerately based compact spaces
X, the map . .
B: K(X)— K(XAS?, av fi(a,[H] —1)

s an isomorphism.
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Corollary 19.11. We have K(5**™') = 0 and K(S**) = Z, generated by the
n-fold recuced product ([H] — 1)™.
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