
Math 231b
Lecture 19

G. Quick

19. Lecture 19: Complex K-theory as a cohomology theory

19.1. K-theory as a cohomology theory. Let C be the category of compact
Hausdorff spaces, C+ be the category of compact Hausdorff spaces with a distin-
guished basepoint, and C2 the category of pairs. We have defined K-theory as
functors K on C and K̃ on C+. We extend it a functor on C2 by defining

K(X,Y ) := K̃(X/Y )

for any pair of compact spaces (X,Y ).

Definition 19.1. For n ≥ 0, we define functors by

K̃−n(X) = K̃(SnX) = K̃(Sn ∧X) for X ∈ C+
K−n(X,Y ) = K̃−n(X/Y ) = K̃(Sn(X/Y )) for (X,Y ) ∈ C2
K−n(X) = K̃−n(X,∅) = K̃(Sn(X+)) for X ∈ C

which are contravariant on the appropriate categories.

Lemma 19.2. For (X,Y ) ∈ C2 we have an exact sequence

K(X,Y )
j∗−→ K(X)

i∗−→ K(Y )

where i : Y → X and j : (X,∅ → (X,Y ) are the inclusions.

Proof. We could apply the representability of K-theory of the previous lecture.
But there is a very nice direct way to prove the lemma:
The composition i∗j∗ is induced by the composition

j ◦ i : (Y,∅)→ (X,Y )

and so factors through the zero group K(Y,Y ). Thus i∗j∗ = 0. Suppose now that
α ∈ Ker(i∗). We may represent α in the form [ξ]− n where ξ is a vector bundle
over X. Since i∗(α) = 0 it follows that

[ξ|Y ] = n in K(Y ).

This implies that for some integer m we have

(ξ ⊕ εm)|Y = εn ⊕ εm,
1
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i.e., we have a trivialization h of (ξ⊕ εm)|Y . This defines a bundle (ξ⊕ εm)/h on
X/Y in the following way. The total space is the quotient of the total space of
ξ ⊕ εm modulo the relation

h−1(y,v) ∼ h−1(y′,v) for y, y′ ∈ Y,
and the projection is just the induced quotient map. We omit the details to show
that this projection map staisfies local triviality. So we can define an element

α′ = [(ξ ⊕ εm)/h]− [εn ⊕ εm] ∈ K̃(X/Y ) = K(X,Y ).

Then
j∗(α′) = [ξ ⊕ εm]− [εn ⊕ εm]

= [E]− n = ξ.

Thus α is in the image of j∗ and we have Ker(i∗) = Im(j∗), which proves the
exactness. �

Corollary 19.3. For (X,Y ) ∈ C2 and Y ∈ C+ (hence X ∈ C+ by taking the same
basepoint y0 ∈ X) the sequence

K(X,Y )
i∗−→ K̃(X)

i∗−→ K̃(Y )

is exact.

Proof. This follows from the previous lemma and the natural isomorphisms

K(X) ∼= K̃(X)⊕K(y0)

and
K(Y ) ∼= K̃(Y )⊕K(y0).

�

Proposition 19.4. For (X,Y ) ∈ C2 there is a natural exact sequence which
extends infinitely to the left

· · · → K−2(Y )
δ−→ K−1(X,Y )

j∗−→ K−1(X)
i∗−→ K−1(Y )

δ−→ K0(X,Y )
j∗−→ K0(X)

i∗−→ K0(Y ).

Proof. it suffices to show the exactness only for the sequence with terms of degree
−1 and 0. Once we have done that we cann apply suspensions and extend the
sequence to the left.
Let C and S denote cone and suspension respectively. Then we the following
sequence of maps

Y ↪→ X ↪→ X ∪ CY ↪→ (X ∪ CY ) ∪ CX ↪→ ((X ∪ CY ) ∪ CX) ∪ C(X ∪ CY )
↓p ↓ ↓
X/Y SY SX

The vertical maps are the quotient maps obtained by collapsing the most recently
attached cone to a point. Now we successicely apply Corollary 19.3 to the pairs
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(X ∪CY,X), ((C ∪CY )∪ (CX), X ∪CY ), and (((X ∪CY )∪CX), ((X ∪CY )∪
CX) ∪C(X ∪CY )). We start with the pair (X ∪CY,X). By Corollary 19.3 we
get an exact sequence

K(X ∪ CY,X)
m∗
−→ K̃(X ∪ CY )

k∗−→ K̃(X).

Since CY is contractible, this implies by Lemma 19.6 below that

p∗ : K̃(X/Y )→ K̃(X ∪ CY )

is an isomorphism. The composition k∗p∗ coincides with j∗. Let

θ : K(X ∪ CY,X)→ K−1(Y ) = K(S1 ∧ Y+)

be the isomorphism induced by the homeomorphisms

(X ∪ CY )/X ≈ CY/Y ≈ S1 ∧ Y+.
Then defining

δ : K−1(Y )→ K(X,Y ) by δ = m∗θ−1

we obtain a diagram

K̃−1(Y )
δ //

θ−1

��

K(X,Y )

p∗

��

j∗ // K̃(X)

=
��

K(X ∪ CY,X)
m∗

// K̃(X ∪ CY )
k∗ // K̃(X)

where the vertical maps are isomorphisms/identities. Hence we obtain the exact
sequence

K̃−1(Y )
δ−→ K(X,Y )

j∗−→ K̃(X).

Applying the same sort of arguments to the remaining pairs yields the remaining
exactness (though it is a bit more complicated than the previous case). �

Example 19.5. In particular, we see that if X is the wedge sum A ∨ B, then
X/A = B and the sequence breaks up into split short exact sequences. This
implies

K̃(X) ∼= K̃(A)⊕ K̃(B).

Lemma 19.6. Let Y ⊂ X be closed contractible subspace. Then the quotient
map q : X → X/Y induces a bijection

q∗ : VectC(X/Y )→ VectC(X).

Proof. Let p : E → X be a bundle over X. Since Y is contractible, E|Y is trivial.
Thus there is a trivialization h

h : E|Y → Y × Cn.
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Moreover, two such trivializations differ by an automorphism of Y × Cn, i.e., by
a map Y → GLn(C). But GLn(C) is connected and V is contractible. Thus
h is unique up to homotopy and so the isomorphism class of E/h is uiquely
determined by that of E. Thus we have constructed a map

VectC(X)→ VectC(X/Y )

and this is a two-sided inverse for q∗. �

This shows that the complex K-theory functor behaves very much like the sin-
gular cohomology functor. In fact, complex K-theory defines a complex oriented
cohomology theory.

19.2. Bott periodicity for K̃. We want a version of the periodicity theorem
for the reduced groups too. We start with the following observation.

Lemma 19.7. For nondegenerately based spaces X and Y , the projections of
X × Y on X and Y and the quotient map X × Y → X ∧ Y induce a natural
isomorphism

K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ) ∼= K̃(X × Y ).

The group K̃(X ∧ Y ) is the kernel of the map

K̃(X × Y )→ K̃(X)⊕ K̃(Y )

induced by the inclusions of X and Y into X × Y .

Proof. The inclusions and projections make X and Y into retracts of X×Y . This
implies that the map

K̃(X × Y )→ K̃(X)⊕ K̃(Y )

induced by the inclusions is a split surjection with splitting

K̃(X)⊕ K̃(Y )→ K̃(X × Y ), (a,b) 7→ p∗1(a) + p∗2(b)

where p1 and p2 are the projections. The inclusion X∨Y → X×Y is a cofibration
by our assumption on X and Y . The quotient of this map is X ∧ Y . This
cofibration induces an exact sequence

K̃(X ∧ Y )→ K̃(X × Y )→ K̃(X ∨ Y ).

Since we have

K̃(X ∨ Y ) ∼= K̃(X)⊕ K̃(Y )

this proves the lemma. �
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Lemma 19.8. The Künneth map

µ : K(X)⊗K(Y )→ K(X × Y )

defined by
µ(a⊗ b) = (p∗1a)(p∗2b),

where p1 and p2 are the projections onto the two factors, induces a reduced map

µ̃ : K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ).

Proof. For: Let x0 ∈ X and y0 ∈ Y be the basepoints, and let a ∈ K̃(X) =
Ker(K(X) → K(x0)) and b ∈ K̃(Y ) = Ker(K(Y ) → K(y0)). Then p∗1a restricts
to zero in K(Y ) and p∗2b restricts to zero in K(X). Hence the product (p∗1a)(p∗2b) ∈
K(X × Y ) restricts to zero in both K(X) and K(Y ) and hence in K(X ∨ Y ). In
particular, (p∗1a)(p∗2b) lies in K̃(X×Y ). Now Lemma 19.7 implies that (p∗1a)(p∗2b)
pulls back to a unique element in K̃(X ∧ Y ). This defines the reduced Künneth
map µ̃. �

We have a reduced splitting

K(X)⊗K(Y ) ∼= K̃(X)⊗ K̃(Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z,
which is compatible with the splitting of Lemma 19.7 and shows that the reduced
Künneth map is a ring homomorphism.

The unreduced version of the periodicity theorem of the previous lecture now
implies the following reduced version.

Theorem 19.9. For nondegenerately based compact spaces X, the map

µ̃ : K̃(X)⊗ K̃(S2)→ K̃(X ∧ S2)

is an isomorphism.

Let H∗ be the canonical line bundle over CP1 = S2 and H be its dual. We
know from the previous lecture

K(S2) ∼= Z[H]/(([H]− 1)2),

and hence
K̃(S2) is the ideal Z([H]− 1).

Then Theorem 19.9 implies the following version of Bott periodicity.

Theorem 19.10 (Bott periodicity). For nondegenerately based compact spaces
X, the map

β : K̃(X)→ K̃(X ∧ S2), a 7→ µ̃(a,[H]− 1)

is an isomorphism.
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Corollary 19.11. We have K̃(S2n+1) = 0 and K̃(S2n) = Z, generated by the
n-fold recuced product ([H]− 1)n.
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