Math 231b
Lecture 23

G. Quick

23. LECTURE 23: PROOF OF THE PERIODICITY THEOREM I

We still need to prove the periodicity theorem for complex K-theory. We will
prove it in the following special form. The proof of the more general form of
Lecture 17 is very similar. Let X be a compact Hausdorff space and H the
canonical line bundle over S? = CP!. We calculated ine one of the homework
problems that we have the relation

(HoH)®1~H®H,

or in other words, in K(S?) we have (H' — 1) = 0. This shows that there is a
natural homomorphism of rings

Z[H]/(H —1)* = K(S?).
Theorem 23.1. The natural homomorphism
p: K(X)®Z[H]/(H-1)*> = K(X)® K(5%) - K(X x S?)

s an isomorphism of rings.

The proof of the theorem will occupy the rest of today’s lecture and the next
one. It is based on a careful analysis of the construction of complex vector bundles
on X x S? via clutching functions. In our exposition we follow Hatcher’s notes.
We encourage everyone to read Atiyah’s original lecture notes as well.

23.1. Clutching functions. We saw on Problem Set 4 that isomorphism classes
of complex vector bundles over S? correspond to homotopy classes of maps

St — GL,(C).

Such functions are called clutching functions. In the proof of Theorem 23.1 we
make use of this idea to construct vector bundles over X x S2.

Let p: E — X be a vector bundle and let f: F x S' — E x S! be an auto-
morphism of the product vector bundle

pxid: Ex S' — X x S
This means that for each € X and z € S*, f specifies an isomorphism

fla,2): p‘l(f) —p ().
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From E and f we construct a vector bundle over X x S? by taking two copies
of E x D? and identifying the subspaces E x S! via f. We write this bundle as
[E,f], and call f a clutching function for [E,f]. If

fi: ExS'— ExS!
is a homotopy of clutching functions, then we get an induced isomorphism

[Eva} = [Evfl]

since from the homotopy f; we can construct a vector bundle over X x S? x I
restricting to [E, fo] and [E,f1] over X x 5% x {0} and X x S? x {1}. Tt is also
clear from the definitions that

[Evfi] © [Ba, fo] = [E @ Ea, fi @ fal.

Let us have a look at some examples:

Example 23.2. For the identity map on S!, [E,id] is just the pullback of E via
the projection X x S? — X. As an element in K(X x §?%), [F,id] is equal to
w(E®1).

Example 23.3. Recall the clutching function for the canonical line bundle H
over CP!: We can write the elements [Zy,21] of CP! as ratios

z=1z/zn € CU{c0} =52

Then we can write points in the disk D2 inside the unit circle S* C C uniquely
in the form

[20/21,1] = [2,1] with |z] <1,
and points in the disk D2 outside S* can be written uniquely in the form
[1,21/2] = [1,271] with |z7'| < 1.
Over Dj the map
[2,1] — (z,1)
defines a section of the canonical line bundle, and over D2 a section is
(1,27 e (1,27h).

These sections determine trivializations of the canonical line bundle over these
two disks, and over their common boundary S* we pass from the trivialization of
D2, to the trivialization of D§ by multiplying with z. Thus by taking D2 as D%
and D3 as D? we see that the canonical line bundle has the clutching function

f: 8" = GL,(C), f(2) = (2).



Example 23.4. a) Taking X to be a point in the previous example, we get
[1,2] = H,
where 1 is the trivial line bundle over the point and z means scalar multiplication
by z€ St c C.
b) More generally, for n > 0 we have
1"=2H®---@H=H"

Writing H~! for the inverse of H with respect to the tensor product in K(X),
ie., H® H™' =1, we can extend this formula to negative n too. For n < 0, we
have

[1,:"|2*H'®---@H'=H"

Example 23.5. a) Now if F is a vector bundle over a compact space X, we
deduce from the previous examples

[E,2"] = u(E ® H") for n € Z,

where H™ denotes the pullback of H™ via the projection X x S% — S2.
b) More generally, if f is a clutching function we get

[E,z"f] = [E.f]® H" for n € Z.

A key observation is that every bundle over X x S? comes from a clutching
function. More precisely:

Lemma 23.6. Let ' — X x S? be a vector bundle of dimension n. Then there
is an n-dimensional bundle E — X and a clutching function f: S' — GL,(C)
such that

F 2 [E,f] over X x S*.

Proof. As in Example 23.3, we consider the unit circle S' € CU {oco} = 5% and
decompose S? into the two disks Dy and D... Let F,, denote the restriction of F
to X x D, for a = 0,00. Now we define E to be the restriction of F' to X x {1}.
Since D, is a disk, the projection

X x Do — X x {1}

is homotopic to the identity map of X x D,, so the bundle F}, is isomorphic to
the pullback of E by the projection map, and this pullback is £ x D,,. This shows
we have an isomorphism
he: Fy = E x D,.
Then we get
f = hoh! as a clutching function for F.
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Remark 23.7. We may assume that a clutching function f is normalized to be
the identity over X x {1}, since we may normalize any isomorphism of the form
he: Eo — E x D, by composing it over each X x {z} with the inverse of its
restriction over X x {1}.

Moreover, any two choices of normalized h, are homotopic through normalized
ha’s, since they differ by a map ¢, from D, to the automorphisms of £ with
ga(1) = id, and such a g, is homotopic to the constant map id by composing it
with a deformation retraction of D, to *.

Thus any two choices fy and f; of normalized clutching functions are joined by a
homotopy of normalized clutching functions f;.

We now know that clutching functions are a tool to understand all vector
bundles over X x S2. The proof of Theorem 23.1 will require that we understand
all possible clutching functions that are needed to construct all vector bundles
over X x S2. The strategy will be to successively simplify the clutching functions.

23.2. Laurent polynomial clutching functions. The first step is to reduce
to Laurent polynomial clutching functions, which have the form

lx,z) = Z a;(z)z"
li|<n
where a;: E — E is a map which restricts to a linear transformation a;(x) in

each fiber p~!(z). Such an a; will be called an endomorphism of E.

Note: The linear transformation a;(z) is not required to be invertible, hence
the terminology. Nevertheless, the linear combination Zlil <, @i(z)z" must be
invertible, since clutching functions are automorphisms.

Hence the first step is to prove the following simplification.

Proposition 23.8. Every vector bundle [E,f]| is isomorphic to [E /(] for some
Laurent polynomial clutching function €. Laurent polynomial clutching functions
by and {1 which are homotopic through clutching functions are homotopic by a
Laurent polynomaial clutching function homotopy

l(z,2) Z a;(z,t)z".

lil<n

The proof is based on the fact that on a compact space X, we can approximate
continuous functions f: X x S' — C by Laurent polynomial functions of the form

Z an(x)z" = Z an(x)e™,

In|<N In|<N
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where z = ¢ € S and each a,, is a continuous function X — C. Motivated by
Fourier series, we set

1 2

an(zr) = — f(x,e®Ye ™ dp.

:27r0

For positive real r, consider the series

u(z,r,d) = Z ap (z)r"e?

nel

For fixed r < 1, this series converges absolutely and uniformly as (z,0) ranges
over X X [0,2r]. This follows from the fact that the geometric series

>
n
converges, and, since X x S! is compact,

| f(z,e")] is bounded and hence also |a,(z)|.

Now we need to show that u(x,r,0) approaches f(z,e) uniformly in z and 6
as r goes to 1. For then sums of finitely many terms in the series for wu(r,z,0)
with 7 near 1 will give the desired approximations to f by Laurent polynomial
functions. Hence we need the following lemma.

Lemma 23.9. Asr — 1, u(r,z,0) — f(z,e?) uniformly in x and 6.

Proof. For r < 1 we have

(@) = S g o e fz.ett)dt
= 2m 1 ZOO . r\n|ein(9—t)f(x’eit)dt

— Jo 2r Lun=
where the order of summation and integration can be interchanged since the series
in the latter formula converges uniformly, by comparison with the geometric series
>, ™. Define the Poisson kernel

o0

1 .
P(ry) = o Z riMle™ for 0 <r <1 and ¢ € R.

n=—oo

Then we have )
u(r,x,0) = / P(r,0 —t)f(x,e")dt.
0

By summing the two geometric series for positive and negative n in the formula
for P(r, ), one computes that

1 1 1 1 1—1r?
Pre) = %[1 1 —reiv * 1— re—i‘P]

:%1—2TCOSQD+T’2’
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where one uses the formula

e + e = 2cos .
We will need three facts about P(r,):

(a) As a function of ¢, P(r,p) is even, of period 27, and monotone decreasing
on [0,7], since the same is true for cos ¢ which appears in the denominator
of P(r,p) with a minus sign. In particular, we have

P(r,p) > P(ryr) > 0 for all r < 1.

(b) fo% P(r,p)dp =1 for each r < 1. This follows from integrating the series
for

P(ryp) = %[1 +2 Z cos(ny)]

term by term (the integral over all terms in the sum yield 0 and the
integral over 1 yields 27).

(c) For fixed ¢ € (0,7), P(r,p) — 0, since the numerator of P(r,p) approaches
0 and the denominator approaches 2 — 2 cos ¢ # 0.

Now to show uniform convergence of u(r,z,0) to f(z,e?) we first observe that,
using (b), we have

lu(z,r,0) — f(z,e?)] | 57 P(r,0 — t) f(w,e)dt — [0 P(r,0 — t) f (2,)dt|

027" P(T, 0 — t)’f('ruen) - f($,616)|dt
Given € > 0, there exists a 0 > 0 such that
|f(2,e") — f(z,e"?)| < ¢ for |t — 0] < and all z,

IA I

since f is uniformly continuous on the compact space X x S!. Let I5 denote the
integral

2m
/ P(r,0 —t)|f(z,e") — f(z,"?)|dt over the interval |t — 0| < 4,
0

and let I§ denote this integral over the complement of the interval |t — 6| < § in
an interval of length 2. Then we have

2T
I < / P(r,0 — t)edt < e/ P(ro — )t = e
It—6]<5 0

By (a) the maximum value of P(r,0 —t) on [t — 0| > ¢ is P(r,d). Hence

2
1; < P(rd) / ey — Fo.e®)dt.
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The integral here as a uniform bound for all x and @ since f is bounded. Thus
by (c) we can make

I5 < € by taking r close enough to 1.

Therefore

|u(z,r,0) — f(z,0)] < I+ I5 < 2e.

Now we are ready for the proof of the proposition.

Proof of Proposition 23.8. Choosing a Hermitian inner product on E, the endo-
morphisms of £ x S! form a vector space End(E x S') with a norm
el = sup ().
Note that the triangle inequality holds for the sup-norm, so balls in End(E x S!)
are convex. The subspace Aut(FE x S!) of automorphisms is open in the topology
defined by this norm since it is the preimage of (0,00) under the continuous map
End(E x S') — [0,00), a = inf  |det(a(z,2))].
(z,2)eX xSt

Hence in order to prove the first statement of the proposition it will suffice to
show that the Laurent polynomials are dense in End(FE x S'), since a sufficiently
close Laurent polynomial approximation ¢ to f will then be homotopic to f via
the linear homotopy

tl 4+ (1 —t)f through clutching functions

which is in Aut(E x.S1) for all 0 < ¢ < 1. Hence f is homotopic to ¢ in Aut(E xS')
and
[E.f] = [E].

The second statement follows similarly by approximating a homotopy from
Uy to {q, viewed as an automorphism of £ x S' x I by a Laurent polynomial
homotopy ¢;. Then we can combine these approximations with linear homotopies
from ¢y to ¢, and ¢, to ¢} to obtain a homotopy ¢; from ¢ to ¢;.

Hence we need to show that every f € End(E x S') can be approximated by
Laurent polynomial endomorphisms. Therefor we choose open sets U; covering
X together with isomorphisms

hil p_l(UZ) — U; X Cm.

We may assume that h; takes the chosen inner product in p~!(U;) to the stan-
dard inner product in C™, by applying the Gram-Schmidt process to h; ' of the
standard basis vectors.



Let {¢;} be a partition of unity subordinate to {U;} an let {X;} be the support
of ¢;. Since X is compact, we cann choose {¢;} such that each X; is a compact
subset in U;. Via h;, the linear maps f(x,z) for x € X; can be viewed as matrices.
The entries of these matrices define functions

X; X Sl — C.
Applying Lemma 23.9 to each entry of the matrices, we can find Laurent poly-
nomial matrices ¢;(z,z) whose entries uniformly approximate those of f(x,z) for
x € X;. It follows that ¢; approximates f in the || - [[-norm, since the entries are

uniformly approximated. From the Laurent polynomial approximations ¢; over
X,; we form the convex linear combination

0=> it

which is a Laurent polynomial approximating f over all of X x S*. O
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