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Lecture 23

G. Quick

23. Lecture 23: Proof of the Periodicity Theorem I

We still need to prove the periodicity theorem for complex K-theory. We will
prove it in the following special form. The proof of the more general form of
Lecture 17 is very similar. Let X be a compact Hausdorff space and H the
canonical line bundle over S2 = CP1. We calculated ine one of the homework
problems that we have the relation

(H ⊗H)⊕ 1 ∼= H ⊕H,
or in other words, in K(S2) we have (H1 − 1) = 0. This shows that there is a
natural homomorphism of rings

Z[H]/(H − 1)2 → K(S2).

Theorem 23.1. The natural homomorphism

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X)⊗K(S2)→ K(X × S2)

is an isomorphism of rings.

The proof of the theorem will occupy the rest of today’s lecture and the next
one. It is based on a careful analysis of the construction of complex vector bundles
on X × S2 via clutching functions. In our exposition we follow Hatcher’s notes.
We encourage everyone to read Atiyah’s original lecture notes as well.

23.1. Clutching functions. We saw on Problem Set 4 that isomorphism classes
of complex vector bundles over S2 correspond to homotopy classes of maps

S1 → GLn(C).

Such functions are called clutching functions. In the proof of Theorem 23.1 we
make use of this idea to construct vector bundles over X × S2.

Let p : E → X be a vector bundle and let f : E × S1 → E × S1 be an auto-
morphism of the product vector bundle

p× id : E × S1 → X × S1.

This means that for each x ∈ X and z ∈ S1, f specifies an isomorphism

f(x,z) : p−1(x)→ p−1(x).
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From E and f we construct a vector bundle over X × S2 by taking two copies
of E ×D2 and identifying the subspaces E × S1 via f . We write this bundle as
[E,f ], and call f a clutching function for [E,f ]. If

ft : E × S1 → E × S1

is a homotopy of clutching functions, then we get an induced isomorphism

[E, f0] ∼= [E,f1]

since from the homotopy ft we can construct a vector bundle over X × S2 × I
restricting to [E,f0] and [E,f1] over X × S2 × {0} and X × S2 × {1}. It is also
clear from the definitions that

[E1,f1]⊕ [E2,f2] ∼= [E1 ⊕ E2, f1 ⊕ f2].

Let us have a look at some examples:

Example 23.2. For the identity map on S1, [E, id] is just the pullback of E via
the projection X × S2 → X. As an element in K(X × S2), [E,id] is equal to
µ(E ⊗ 1).

Example 23.3. Recall the clutching function for the canonical line bundle H
over CP1: We can write the elements [Z0,z1] of CP1 as ratios

z = z0/z1 ∈ C ∪ {∞} = S2.

Then we can write points in the disk D2
0 inside the unit circle S1 ⊂ C uniquely

in the form

[z0/z1,1] = [z,1] with |z| ≤ 1,

and points in the disk D2
∞ outside S1 can be written uniquely in the form

[1,z1/z0] = [1,z−1] with |z−1| ≤ 1.

Over D2
0 the map

[z,1] 7→ (z,1)

defines a section of the canonical line bundle, and over D2
∞ a section is

[1,z−1] 7→ (1,z−1).

These sections determine trivializations of the canonical line bundle over these
two disks, and over their common boundary S1 we pass from the trivialization of
D2
∞ to the trivialization of D2

0 by multiplying with z. Thus by taking D2
∞ as D2

+

and D2
0 as D2

− we see that the canonical line bundle has the clutching function

f : S1 → GLn(C), f(z) = (z).



3

Example 23.4. a) Taking X to be a point in the previous example, we get

[1,z] ∼= H,

where 1 is the trivial line bundle over the point and z means scalar multiplication
by z ∈ S1 ⊂ C.
b) More generally, for n ≥ 0 we have

[1,zn] ∼= H ⊗ · · · ⊗H = Hn.

Writing H−1 for the inverse of H with respect to the tensor product in K(X),
i.e., H ⊗H−1 ∼= 1, we can extend this formula to negative n too. For n ≤ 0, we
have

[1, zn] ∼= H−1 ⊗ · · · ⊗H−1 = Hn.

Example 23.5. a) Now if E is a vector bundle over a compact space X, we
deduce from the previous examples

[E,zn] ∼= µ(E ⊗ Ĥn) for n ∈ Z,

where Ĥn denotes the pullback of Hn via the projection X × S2 → S2.
b) More generally, if f is a clutching function we get

[E,znf ] ∼= [E,f ]⊗ Ĥn for n ∈ Z.

A key observation is that every bundle over X × S2 comes from a clutching
function. More precisely:

Lemma 23.6. Let F → X × S2 be a vector bundle of dimension n. Then there
is an n-dimensional bundle E → X and a clutching function f : S1 → GLn(C)
such that

F ∼= [E,f ] over X × S2.

Proof. As in Example 23.3, we consider the unit circle S1 ⊂ C ∪ {∞} = S2 and
decompose S2 into the two disks D0 and D∞. Let Fα denote the restriction of F
to X ×Dα for α = 0,∞. Now we define E to be the restriction of F to X ×{1}.
Since Dα is a disk, the projection

X ×Dα → X × {1}
is homotopic to the identity map of X ×Dα, so the bundle Fα is isomorphic to
the pullback of E by the projection map, and this pullback is E×Dα. This shows
we have an isomorphism

hα : Fα → E ×Dα.

Then we get
f = h0h

−1
∞ as a clutching function for F.

�
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Remark 23.7. We may assume that a clutching function f is normalized to be
the identity over X × {1}, since we may normalize any isomorphism of the form
hα : Eα → E × Dα by composing it over each X × {z} with the inverse of its
restriction over X × {1}.
Moreover, any two choices of normalized hα are homotopic through normalized
hα’s, since they differ by a map gα from Dα to the automorphisms of E with
gα(1) = id, and such a gα is homotopic to the constant map id by composing it
with a deformation retraction of Dα to ∗.
Thus any two choices f0 and f1 of normalized clutching functions are joined by a
homotopy of normalized clutching functions ft.

We now know that clutching functions are a tool to understand all vector
bundles over X×S2. The proof of Theorem 23.1 will require that we understand
all possible clutching functions that are needed to construct all vector bundles
over X×S2. The strategy will be to successively simplify the clutching functions.

23.2. Laurent polynomial clutching functions. The first step is to reduce
to Laurent polynomial clutching functions, which have the form

`(x,z) =
∑
|i|≤n

ai(x)zi

where ai : E → E is a map which restricts to a linear transformation ai(x) in
each fiber p−1(x). Such an ai will be called an endomorphism of E.

Note: The linear transformation ai(x) is not required to be invertible, hence
the terminology. Nevertheless, the linear combination

∑
|i|≤n ai(x)zi must be

invertible, since clutching functions are automorphisms.

Hence the first step is to prove the following simplification.

Proposition 23.8. Every vector bundle [E,f ] is isomorphic to [E,`] for some
Laurent polynomial clutching function `. Laurent polynomial clutching functions
`0 and `1 which are homotopic through clutching functions are homotopic by a
Laurent polynomial clutching function homotopy

`t(x,z)
∑
|i|≤n

ai(x,t)z
i.

The proof is based on the fact that on a compact space X, we can approximate
continuous functions f : X×S1 → C by Laurent polynomial functions of the form∑

|n|≤N

an(x)zn =
∑
|n|≤N

an(x)einθ,
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where z = eiθ ∈ S1 and each an is a continuous function X → C. Motivated by
Fourier series, we set

an(x) =
1

2π

∫ 2π

0

f(x,eiθ)e−inθdθ.

For positive real r, consider the series

u(x,r,θ) =
∑
n∈Z

an(x)r|n|einθ.

For fixed r < 1, this series converges absolutely and uniformly as (x,θ) ranges
over X × [0,2π]. This follows from the fact that the geometric series∑

n

rn

converges, and, since X × S1 is compact,

|f(x, eiθ)| is bounded and hence also |an(x)|.

Now we need to show that u(x,r,θ) approaches f(x,eiθ) uniformly in x and θ
as r goes to 1. For then sums of finitely many terms in the series for u(r,x,θ)
with r near 1 will give the desired approximations to f by Laurent polynomial
functions. Hence we need the following lemma.

Lemma 23.9. As r → 1, u(r,x,θ)→ f(x,eiθ) uniformly in x and θ.

Proof. For r < 1 we have

u(x,r,θ) =
∑∞

n=−∞
1
2π

∫ 2π

0
r|n|ein(θ−t)f(x,eit)dt

=
∫ 2π

0
1
2π

∑∞
n=−∞ r

|n|ein(θ−t)f(x,eit)dt

where the order of summation and integration can be interchanged since the series
in the latter formula converges uniformly, by comparison with the geometric series∑

n r
n. Define the Poisson kernel

P (r,ϕ) =
1

2π

∞∑
n=−∞

r|n|einϕ for 0 ≤ r ≤ 1 and ϕ ∈ R.

Then we have

u(r,x,θ) =

∫ 2π

0

P (r, θ − t)f(x,eit)dt.

By summing the two geometric series for positive and negative n in the formula
for P (r, ϕ), one computes that

P (r,ϕ) =
1

2π
[1− 1

1− reiϕ
+

1

1− re−iϕ
] =

1

2π

1− r2

1− 2r cosϕ+ r2
,
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where one uses the formula

eiϕ + e−iϕ = 2 cosϕ.

We will need three facts about P (r,ϕ):

(a) As a function of ϕ, P (r,ϕ) is even, of period 2π, and monotone decreasing
on [0,π], since the same is true for cosϕ which appears in the denominator
of P (r,ϕ) with a minus sign. In particular, we have

P (r,ϕ) ≥ P (r,π) > 0 for all r < 1.

(b)
∫ 2π

0
P (r,ϕ)dϕ = 1 for each r < 1. This follows from integrating the series

for

P (r,ϕ) =
1

2π
[1 + 2

∞∑
n=1

cos(nϕ)]

term by term (the integral over all terms in the sum yield 0 and the
integral over 1 yields 2π).

(c) For fixed ϕ ∈ (0,π), P (r,ϕ)→ 0, since the numerator of P (r,ϕ) approaches
0 and the denominator approaches 2− 2 cosϕ 6= 0.

Now to show uniform convergence of u(r,x,θ) to f(x,eiθ) we first observe that,
using (b), we have

|u(x,r,θ)− f(x,eiθ)| = |
∫ 2π

0
P (r, θ − t)f(x,eit)dt−

∫ 2π

0
P (r, θ − t)f(x,eiθ)dt|

≤
∫ 2π

0
P (r, θ − t)|f(x,eit)− f(x,eiθ)|dt.

Given ε > 0, there exists a δ > 0 such that

|f(x,eit)− f(x,eiθ)| < ε for |t− θ| < δ and all x,

since f is uniformly continuous on the compact space X × S1. Let Iδ denote the
integral∫ 2π

0

P (r, θ − t)|f(x,eit)− f(x,eiθ)|dt over the interval |t− θ| ≤ δ,

and let I ′δ denote this integral over the complement of the interval |t− θ| ≤ δ in
an interval of length 2π. Then we have

Iδ ≤
∫
|t−θ|≤δ

P (r, θ − t)εdt ≤ ε

∫ 2π

0

P (r,θ − t)dt = ε.

By (a) the maximum value of P (r,θ − t) on |t− θ| ≥ δ is P (r, δ). Hence

I ′δ ≤ P (r,δ)

∫ 2π

0

|f(x,eit)− f(x,eiθ)|dt.
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The integral here as a uniform bound for all x and θ since f is bounded. Thus
by (c) we can make

I ′δ ≤ ε by taking r close enough to 1.

Therefore
|u(x,r,θ)− f(x,θ)| ≤ Iδ + I ′δ ≤ 2ε.

�

Now we are ready for the proof of the proposition.

Proof of Proposition 23.8. Choosing a Hermitian inner product on E, the endo-
morphisms of E × S1 form a vector space End(E × S1) with a norm

‖α‖ = sup
|v|=1

|α(v)|.

Note that the triangle inequality holds for the sup-norm, so balls in End(E×S1)
are convex. The subspace Aut(E×S1) of automorphisms is open in the topology
defined by this norm since it is the preimage of (0,∞) under the continuous map

End(E × S1)→ [0,∞), α 7→ inf
(x,z)∈X×S1

| det(α(x,z))|.

Hence in order to prove the first statement of the proposition it will suffice to
show that the Laurent polynomials are dense in End(E×S1), since a sufficiently
close Laurent polynomial approximation ` to f will then be homotopic to f via
the linear homotopy

t`+ (1− t)f through clutching functions

which is in Aut(E×S1) for all 0 ≤ t ≤ 1. Hence f is homotopic to ` in Aut(E×S1)
and

[E,f ] ∼= [E,`].

The second statement follows similarly by approximating a homotopy from
`0 to `1, viewed as an automorphism of E × S1 × I by a Laurent polynomial
homotopy `′t. Then we can combine these approximations with linear homotopies
from `0 to `′0 and `1 to `′1 to obtain a homotopy `t from `0 to `1.

Hence we need to show that every f ∈ End(E × S1) can be approximated by
Laurent polynomial endomorphisms. Therefor we choose open sets Ui covering
X together with isomorphisms

hi : p
−1(Ui)→ Ui × Cni .

We may assume that hi takes the chosen inner product in p−1(Ui) to the stan-
dard inner product in Cni , by applying the Gram-Schmidt process to h−1i of the
standard basis vectors.
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Let {φi} be a partition of unity subordinate to {Ui} an let {Xi} be the support
of φi. Since X is compact, we cann choose {φi} such that each Xi is a compact
subset in Ui. Via hi, the linear maps f(x,z) for x ∈ Xi can be viewed as matrices.
The entries of these matrices define functions

Xi × S1 → C.
Applying Lemma 23.9 to each entry of the matrices, we can find Laurent poly-
nomial matrices `i(x,z) whose entries uniformly approximate those of f(x,z) for
x ∈ Xi. It follows that `i approximates f in the ‖ · ‖-norm, since the entries are
uniformly approximated. From the Laurent polynomial approximations `i over
Xi we form the convex linear combination

` =
∑
i

φi`i,

which is a Laurent polynomial approximating f over all of X × S1. �
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