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25. Lecture 25: Adams operations in complex K-theory

There are very important ring homomorphisms in complex K-theory, called
Adams operations. Today we are going to see how they can be defined and that
they have the following properties:

Theorem 25.1. For each non-zero integer k and each compact Hausdorff space
X, there is a ring homomorphism

ψk : K(X)→ K(X)

satisfying the following properties:

(1) ψ1 = id and ψ−1 is induced by conjugation of complex bundles.
(2) ψkf ∗ = f ∗ψk for all maps f : X → Y , i.e., the ψk are natural homomor-

phisms.
(3) ψk(L) = Lk = L⊗ · · · ⊗ L if L is a line bundle.
(4) ψk ◦ ψ` = ψk`.
(5) ψp(α) ≡ αp modulo p for a prime p
(6) If X is a based space, then, by the naturality property (2), each ψk restricts

to an operation

ψk : K̃(X)→ K̃(X),

since K̃(X) is the kernel of the homomorphism K(X)→ K(x0).
For 2n-spheres, the Adams operations act as

ψk(x) = knx for x ∈ K̃(S2n).

The proof of the theorem will occupy the rest of today’s lecture.

First of all, if we impose property (4), ψ−k = ψkψ−1, and use (1) to define ψ−1,
we only need to construct the ψk for k > 1.

By extending the construction from vector spaces to bundles we can form an
exterior power λk(E) which has the following properties:

(i) λk(E1 ⊕ E2) ∼= ⊕i+j=kλ
i(E1)⊗ λj(E2).

(ii) λ0(E) = 1, the trivial line bundle.
(ii) λ1(E) = E.
(iv) λk(E) = 0 for k greater than the maximum dimension of the fibers of E.
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Lemma 25.2. The λk extend to operations on K-theory

λk : K(X)→ K(X).

Proof. Consider the multiplicative group G of power series with constant term 1
in the ring K(X)[[t]] of formal power series in the variable t. We define a function
from equivalence classes of vector bundles to this abelian group by setting

Λ(E) := 1 + λ1(E)t+ · · ·+ λk(E)tk + · · · .

Property (i) above implies

Λ(E1 ⊕ E2) = Λ(E1)Λ(E2).

This means that Λ is a morphism of monoids and hence induces a homomorphism
of groups

Λ: K(X)→ G.

We define

λk(x) to be the coefficient of tk in Λ(x).

�

Back to the Adams operations. Let us consider the special case of a vector
bundle E which is a sum of line bundles Li. Then properties (3) and (4) give us
a formula

ψk(L1 + · · ·+ Ln) = Lk
1 + · · ·+ Lk

n.

The construction of the ψk will be based on showing that there is a polynomial
Qk with integral coefficients with

Lk
1 + · · ·+ Lk

n = Qk(λ1(E), . . . , λk(E)).

This leads us to define

ψk(E) = Qk(λ1(E), . . . , λk(E))

for arbitrary E.

So we need to find these polynomials Qk. Therefor we consider the polynomial
algebra Z[x1, . . . , xn] and let

σi = x1x2 · · ·xi + · · ·

be the ith elementary symmetric function in the xi’s. The σi’s form a subring

Z[σ1, . . . , σn] ⊂ Z[x1, . . . , xn],

and satisfy

(1 + x1) · · · (1 + xn) = 1 + σ1 + · · ·+ σn.
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The crucial property for us is that every symmetric polynomial of degree k in
x1, . . . , xn can be expressed as a unique polynomial in σ1, . . . , σk. In particular,
there is a polynomial Qk such that

(1) Qk(σ1, . . . , σk) = xk1 + · · ·+ xkn.

Moreover, this Qk is independent of n as long k ≤ n, since we can pass from n
to n− 1 by setting xn = 0.

Lemma 25.3. The Qk satisfy the recursive formula

Qk = σ1Qk−1 − σ2Qk−2 + · · ·+ (−1)k−2σk−1Q1 + (−1)k−1kσk.

Proof. This is an exercise. �

The lemma yields for example

Q1 = σ1, Q2 = σ2
1 − 2σ2, Q3 = σ3

1 − 3σ1σ2 + 3σ3.

Lemma 25.4. For E = L1 + · · ·+ Ln:

Lk
1 + · · ·+ Lk

n = Qk(λ1(E), . . . , λk(E)).

Proof. The assumption on E implies

Λ(E) =
∏
i

Λ(Li) =
∏
i

(1 + λ1(Li)t) =
∏
i

(1 + Lit).

When we compute the product we see that the coefficient λi(E) of ti in Λ(E)
satisfies

λi(E) = σi(L1, . . . , Ln).

Substituting Li for xi in (1) now yields the assertion. �

Now we can define ψk.

Definition 25.5. For every element ξ in K(X) we define

ψk(ξ) = Qk(λ1(ξ), . . . , λk(ξ)).

Now we need to show that the ψk’s satisfy the properties of the theorem. To
do this we will use the following fact, known as the Splitting Principle, which is
very useful for proving all kinds of statements in K(X).

Theorem 25.6. Given a vector bundle E → X over a compact Hausdorff space
X, there is a compact Hausdorff space F (E) and a map p : F (E)→ X such that
the induced map p∗ : K∗(X) → K∗(F (E)) is injective and p∗(E) splits as a sum
of line bundles.
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Using Theorem 25.6 we finish the proof of Theorem 25.1:

(1) holds by definition for ψ−1 and follows from Q1 = σ1 and Theorem 25.6
for ψ1.

(2) follows from the naturality of λk, i.e., f ∗(λi(E)) = λi(f ∗(E)).
(3) If E = L is a line bundle, then λ1(L) = L and λk(L) = 0 for k ≥ 2. Hence

ψk(L) = Qk(L) = Lk.

For it follows from Lemma 25.3 that Qk ≡ σk
1 modulo terms in the ideal

generated by the σi’s for i > 1.
Additivity: Let E and F be vector bundles over X. By (2) and Theorem 25.6 we take

a pullback to split E and then take another pullback to split F as sums
of line bundles. But then the identity

ψk(L1 + · · ·+ Ln) = Lk
1 + · · ·Lk

n

shows us that ψk is additive for sums of line bundles. The injectivity
statement of Theorem 25.6 implies that we have

ψk(E ⊕ F ) = ψk(E) + ψk(F ).

This implies that ψk is an additive map K(X)→ K(X).
Multiplicativity: Let E and F be vector bundles over X. By (2) and Theorem 25.6 we take

a pullback to split E of line bundles Li’s and then take another pullback
to split F as sums of line bundles Mj’s. Then E ⊗ F is a sum of line
bundles Li ⊗Mj. Hence

ψk(E ⊗ F ) =
∑
i,j

ψk(Li ⊗Mj) =
∑
i,j

(Li ⊗Mj)
k =

∑
i

Lk
i

∑
j

Mk
j = ψk(E)ψk(F ).

This implies that ψk is a multiplicative map K(X)→ K(X).
(4) Theorem 25.6 and Additivity reduce us to the case E = L a line bundle.

But in this case we know

ψk(ψ`(L)) = Lk` = ψk`(L).

(5) Once again we can assume E = L1 + · · ·+ Ln. Then

ψp(E) = Lp
1 + · · ·+ Lp

n ≡ (L1 + · · ·+ Ln)p = Ep modulo p.

(6) We know from before that K̃(S2) is generated by 1− [H] with (1− [H])2 =
0. By additivity, we know

ψk(1− [H]) = 1− [H]k.

By induction on k, one sees 1− [H]k = k(1− [H]). For

1− [H]k = (1− [H]k−1)[H]+(1− [H]) = (k−1)(1− [H])+(1− [H]) = k(1− [H]).

This shows the formula for S2. Now we use that

S2n = S2 ∧ · · · ∧ S2
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and K̃(S2n) is generated by the k-fold tensor power

(1− [H])⊗ · · · ⊗ (1− [H]).

Now (6) follows from the multiplicativity of ψk.
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