
Math 231b
Lecture 26

G. Quick

26. Lecture 26: The Hopf invariant one problem via K-theory

We return to one of our initial problems and answer the question for which
n there can be a division algebra structure on Rn. The answer to this question
will follow from the solution of a famous problem in algebraic topology, the Hopf
invariant one problem.

26.1. The Hopf invariant. For n ≥ 2, let Sn be an oriented n-sphere. Assume
we are given a pointed map f : S2n−1 → Sn. Considering S2n−1 as the boundary
of an oriented 2n-cell, we can form the cell complex X = Xf = Sn ∪f e2n, the
cofiber of f . It is the complex formed from the disjoint union of Sn and e2n by
identifying each point in S2n−1 = e̊2n with its image under f . The cell complex
X has a single vertex, a single n-cell and a single 2n-cell.

Let
π : X → X/Sn ∼= S2n

be the quotient map that collapses Sn. It fits into a sequence

S2n−1 f−→ Sn
i−→ X

π−→ S2n Σf−→ Sn+1.

Now we specialize to the case that n is even and form the long exact sequence in
reduced K-theory of the pair (X,Sn). Since

K̃1(S2n) = K̃1(Sn) = 0

we obtain a short exact sequence

(1) 0→ K̃(S2n)
π∗
−→ K̃(X)

i∗−→ K̃(Sn)→ 0.

Let in be a generator of K̃(Sn) and i2n be a generator of K̃(S2n). Choose an
element

a ∈ K̃(X) such that i∗(a) = in and let b = π∗(i2n) ∈ K̃(X).

The sequence (1) shows that K̃(X) is a free abelian with generators a and b, since

K̃(S2n) ∼= K̃(Sn) ∼= Z.

Since any square in K̃(Sn) vanishes we have i2n = 0. Hence

a2 = h(f) · b for some integer h(f).
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Lemma 26.1. The integer h(f) is well-defined.

Proof. We need to show that h := h(f) does not depend on the choice of a.
Because of the exactness of (1), a is unique up to adding a multiple of b. Moreover,

(a+mb)2 = a2 + 2m · a · b, since b2 = π∗(i22n) = 0.

Hence it suffices to show a · b = 0. Since b maps to 0 in K̃(Sn), so does a · b.
Hence

a · b = k · b for some integer k.

Multiplying the equation k · b = b · a on the right by a gives

k · b · a = b · a2 = b · h · b = h · b2 = 0 since b2 = 0.

Thus k · b · a = 0, which implies a · b = 0 since a · b lies in the image of K̃(S2n) in
K̃(X) which is an infinite cyclic subgroup of K̃(X). �

Definition 26.2. The Hopf invariant of f is the integer h(f).

Example 26.3. If n is 2, 4, or 8, there exists a map f : S2n−1 → Sn with Hopf
invariant one. For n = 2, f may be taken as the natural projection

f : S3 → S2 = CP1,

viewing S3 as the unit sphere in the complex plane C2. Such an f is the attaching
map in the complex projective plane

CP2 = S2 ∪f e4.

Then we have h(f) = 1, since K̃(CP2) ∼= Z · a⊕ Z · a2, and hence the generator
b is exactly a2.

The cases n = 4 and n = 8 correspond to the quaternionic plane and the
Cayley plane, respectively. We will get back to these examples later.

Remark 26.4. The Hopf invariant is usually defined using integral cohomology
groups. But we will show later that both definitions yield the same number.
Using the cohomological definition it is clear that, if n is odd, then h(f) = 0 for
all f . So n even is the only interesting case and our initial reduction to that case
is not really a restriction.

Remark 26.5. The homotopy type of X depends only on the homotopy class
of the map f . Thus h(f) only depends on the homotopy class of f . We may
therefore speak of the Hopf invariant of a homotopy class and consider h as a
function

h : π2n−1(Sn)→ Z.

The Hopf invariant has the following properties.
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Proposition 26.6. Let n ≥ 2 be an even integer. The Hopf invariant has the
following properties:

(1) If g : S2n−1 → S2n−1 has degree d, then h(f ◦ g) = d · h(f).
(2) If e : Sn → Sn has degree d, then h(e ◦ f) = d2 · h(f).
(3) There exists a map f : S2n−1 → Sn with Hopf invariant two.
(4) The Hopf invariant defines a homomorphism of groups π2n−1(Sn)→ Z.

We will postpone the proof of the proposition. We just mention an immediate
consequence for the structure of the homotopy groups of spheres.

Corollary 26.7. If n is even, then π2n−1(Sn) contains an infinite cyclic subgroup
as a direct summand.

Proof. In fact, the cyclic subgroup generated by the homotopy class of a map of
Hopf invariant two must be mapped isomorphically onto the even integers by the
homomorphism h. �

The much more important and harder result is the following famous theorem
of J. F. Adams. Adams’ initial proof was based on cohomological methods. Using
Adams operations in complex K-theory yields a much simpler proof due to Adams
and Atiyah.

Theorem 26.8. For an even integer n ≥ 2, there exists a map f : S2n−1 → Sn

with h(f) = ±1 only if n = 2, 4, or 8.

Proof. We write n = 2m. Since we computed the effect of the kth Adams opera-
tion ψk on K̃(S2m) we know

ψk(i2n) = k2mi2n and ψk(in) = kmin.

Hence
ψk(b) = k2mb and ψk(a) = kma+ µk

for some integer µk. For k = 2 this is

2ma+ µ2b = ψ2(a) ≡ a2 = h(f) · b mod 2.

Thus h(f) = ±1 implies that µ2 is odd.

Now, for any odd k,

ψkψ2(a) = ψk(2ma+ µ2b)
= km2ma+ (2mµk + k2mµ2)b

while
ψ2ψk(a) = ψ2(kma+ µkb)

= 2mkma+ (kmµ2 + 22mµk)b.
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Since ψkψ2 = ψ2k = ψ2ψk, these two expressions must be equal. Moreover, since
K̃(X) is a free abelian group, the coefficients of b must agree

2m(2m − 1)µk = km(km − 1)µ2.

Since µ2 is odd, this implies that 2m divides km − 1. Already with k = 3, the
following elementary number theoretic lemma shows that this implies m = 1, 2,
or 4. �

Lemma 26.9. If 2m divides 3m − 1 then m = 1, 2, or 4.

Proof. Write m = 2`k with k odd. It suffices to show that the highest power of 2
dividing 3m − 1 is 2 for ` = 0 and 2`+2 for ` > 0. Then the lemma follows, since
if 2n divides 3m − 1, then we deduce m ≤ ` + 2, hence 2` ≤ 2`k = m ≤ ` + 2.
This implies ` ≤ 2 and m ≤ 4. The cases m = 1, 2, 3, and 4 can then be checked
individually.

We use induction on `. For ` = 0 we have

3m − 1 = 3k − 1 ≡ 2 mod 4, since 3 ≡ −1 mod 4 and k is odd.

Hence the highest power of 2 dividing 3m−1 is 2. In the next case ` = 1, we have

3m − 1 = 32k − 1 = (3k − 1)(3k + 1).

The highest power of 2dividing the first factor is 2 as we just showed and the
highest power of 2 dividing the second factor is 2 since

3k + 1 ≡ 4 mod 8 because 32 ≡ 1 mod 8 and m is odd.

So the highest power of 2 dividing the product (3k − 1)(3k + 1) is 8. For the
inductive step of passing from ` to `+ 1 with ` ≥ 1, or in other words from m to
2m with m even, write

32m − 1 = (3m − 1)(3m + 1).

Then 3m + 1 ≡ 2 mod 4 since m is even, so the highest power dividing 3m + 1 is
2. Thus the highest power of 2 dividing 32m − 1 is twice the highest power of 2
dividing 3m − 1. �
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