Math 231b Lecture 27

G. Quick

27. Lecture 27: Consequences of the Hopf invariant one problem

Last time we discussed the K-theoretical proof of the following fundamental result.

Theorem 27.1. For an even integer $n \geq 2$, there exists a map $f: S^{2n-1} \to S^n$ with Hopf invariant one only if n = 2, 4, or 8.

Today we will see some consequences of this result.

27.1. H-space structures on S^{n-1} . As an important consequence of the theorem we can determine for which n the sphere S^n admits an H-space structure, i.e., there is a continuous multiplication map

$$q: S^n \times S^n \to S^n$$

with a two-sided identity element.

Theorem 27.2. If S^{n-1} is an *H*-space, then n = 1, 2, 4, or 8.

Let us first deal with the case that n is odd. Write n-1=2k. Since the K-theory group $K(S^{2k})$ is isomorphic to $\mathbb{Z}[\alpha]/(\alpha^2)$, the Bott periodicity theorem implies

$$K(S^{2k} \times S^{2k}) \cong \mathbb{Z}[\alpha, b]/(\alpha^2, \beta^2)$$

where α and b denote the pullback of generators of $K(S^{2k})$ and $K(S^{2k})$ under the projections of $S^{2k} \times S^{2k}$ onto its two factors. An additive basis for $K(S^{2k} \times S^{2k})$ is thus $\{1, \alpha, \beta, \alpha\beta\}$.

Now let us assume we had an H-space multiplication map

$$\mu \colon S^{2k} \times S^{2k} \to S^{2k}$$

and let e be the identity element. The induced homomorphism of K-rings has the form

$$\mu^* \colon \mathbb{Z}[\gamma]/(\gamma^2) \to \mathbb{Z}[\alpha,\beta]/(\alpha^2,\beta^2).$$

We claim

$$\mu^*(\gamma) = \alpha + \beta + m\alpha\beta$$
 for some integer m .

For: the composition

$$S^{2k} \xrightarrow{i} S^{2k} \times S^{2k} \xrightarrow{\mu} S^{2k}$$

is the identity, where i is the inclusion onto either of the subspaces $S^{2k} \times \{e\}$ or $\{e\} \times S^{2k}$ (with e the identity element of the H-space structure). The map i^* for i the inclusion onto the first factor sends α to γ and b to 0, so the coefficient of α in $\mu^*(\gamma)$ must be 1. Similarly the coefficient of β in $\mu^*(\gamma)$ must be 1. This proves the claim.

But this leads to a contradiction, since it implies

$$\mu^*(\gamma^2) = (\alpha + \beta + ma\beta)^2 = 2\alpha\beta \neq 0,$$

which is impossible since $\gamma^2 = 0$.

The strategy to prove Theorem 27.2 for n even is the following: given an H-space structure on S^{n-1} , we construct from it a map $f: S^{2n-1} \to S^n$ of Hopf invariant one.

Let $g: S^{n-1} \times S^{n-1} \to S^{n-1}$ be a continuous map. Regard S^{2n-1} as

$$\partial(D^n \times D^n) = \partial D^n \times D^n \cup D^n \times \partial D^n,$$

and we consider S^n as the union of two disks D^n_+ and D^n_- with their boundaries identified. Then $f\colon S^{2n-1}\to S^n$ is defined by

$$f(x,y) = |y|g(x,y/|y|) \in D^n_+ \text{ on } \partial D^n \times D^n$$

and

$$f(x,y) = |x|g(x/|x|,y) \in D_{-}^{n} \text{ on } D^{n} \times \partial D^{n}.$$

Note that f is well-defined and continuous, even when |x| or |y| is zero, and f agrees with g on $S^{n-1} \times S^{n-1}$.

Lemma 27.3. Let $n \geq 2$ be an even integer. If $g: S^{n-1} \times S^{n-1} \to S^{n-1}$ is an H-space multiplication, then the associated map $f: S^{2n-1} \to S^n$ has Hopf invariant ± 1 .

Proof. Let $e \in S^{n-1}$ be the identity element for the H-space multiplication, and let f be the map constructed above. In view of the definition of f it is natural to view the characteristic map ϕ of the 2n-cell of X_f as a map

$$\phi \colon (D^n \times D^n, \partial (D^n \times D^n)) \to (X_f, S^n).$$

In the following commutative diagram the horizontal maps are the product maps. The diagonal map is the external product, equivalent to the external product

$$\tilde{K}(S^n) \otimes \tilde{K}(S^n) \to \tilde{K}(S^{2n}),$$

which is an isomorphism since it is an iterate of the Bott periodicity isomorphism.

which is an isomorphism since it is an iterate of the Bott periodicity isomorphism.
$$\tilde{K}(X_f) \otimes \tilde{K}(X_f) \longrightarrow \tilde{K}(X_f)$$

$$\cong \uparrow \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad$$

By the definition of an H-space and the definition of f, the map ϕ restricts to a homeomorphism from $D^n \times \{e\}$ onto D^n_+ and from $\{e\} \times D^n$ onto D^n_- . It follows that the element $a \otimes a$ in the upper left group maps to a generator of the group in the bottom row of the diagram, since a maps to a generator of $\tilde{K}(S^n)$ by definition. Therefore by the commutativity of the diagram, the product map in the top row sends

$$a \otimes a \mapsto \pm b$$

since b was defined to be the image of a generator of $\tilde{K}(X_f,S^n)$. Thus we have

$$a^2 = \pm b$$
.

which means that the Hopf invariant of f is ± 1 .

Theorem 27.2 is now an immediate consequence of the lemma.

27.2. Division algebra structures on \mathbb{R}^n . The determination of which spheres are H-spaces has the following important implications.

Theorem 27.4. Let $\omega \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be a map with two-sided identity element $e \neq 0$ and no zero-divisors. Then n = 1, 2, 4, or 8.

Proof. The product restricts to give $\mathbb{R}^n - \{0\}$ an H-space structure. Since S^{n-1} is homotopy equivalent to $\mathbb{R}^n - \{0\}$, it inherits an H-space structure. Explicitly, we may assume that $e \in S^{n-1}$ by rescaling the metric, and we give S^{n-1} the multiplication

$$\phi \colon S^{n-1} \times S^{n-1} \to S^{n-1}$$

defined by

$$\phi(x,y) = \omega(x,y)/|\omega(x,y)|.$$

This is well-defined, since ω has no zero divisors.

Remark 27.5. Note that ω need not be bilinear, just continuous. it also need not have a strict unit. All we needed is that e is a two-sided unit up to homotopy for the restriction of ω to $\mathbb{R}^n - \{0\}$.

In Lecture 3, we showed that there are trivializations of the tangent bundle of the spheres S^1 , S^3 , and S^7 . Now we can show that there are no other spheres with trivial tangent bundle.

Theorem 27.6. If S^n is parallelizable, i.e., if the tangent bundle τ to S^n is trivial, then n = 0, 1, 3, or 7.

Proof. The case n=0 is trivial. So let $n \geq 1$ and assume that S^n is parallelizable. Let v_1, \ldots, v_n be a tangent vector field which are linearly independent at each point of S^n . By the Gram-Schmidt process we may make the vectors $x, v_1(x), \ldots, v_n(x)$ orthonormal for all $x \in S^n$. We may assume also that at the first standard basis vector e_1 , the vectors $v_1(e_1), \ldots, v_n(e_1)$ are the standard basis vectors e_2, \ldots, e_{n+1} . To achieve this we might have to change the sign of v_n to get the orientations right and then deform the vector fields near e_1 .

Now let $\phi_x \in SO(n+1)$ send the standard basis to $x, v_1(x), \dots, v_n(x)$. Then the map

$$\phi \colon (x,y) \mapsto \phi_x(y)$$

defines an *H*-space structure on S^n with the identity element e_1 since ϕ_{e_1} is the identity map and $\phi_x(e_1) = x$ for all x. Hence n = 1, 3, or 7.