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G. Quick

27. Lecture 27: Consequences of the Hopf invariant one problem

Last time we discussed the K-theoretical proof of the following fundamental
result.

Theorem 27.1. For an even integer n ≥ 2, there exists a map f : S2n−1 → Sn

with Hopf invariant one only if n = 2, 4, or 8.

Today we will see some consequences of this result.

27.1. H-space structures on Sn−1. As an important consequence of the the-
orem we can determine for which n the sphere Sn admits an H-space structure,
i.e., there is a continuous multiplication map

g : Sn × Sn → Sn

with a two-sided identity element.

Theorem 27.2. If Sn−1 is an H-space, then n = 1, 2, 4, or 8.

Let us first deal with the case that n is odd. Write n − 1 = 2k. Since the
K-theory group K(S2k) is isomorphic to Z[α]/(α2), the Bott periodicity theorem
implies

K(S2k × S2k) ∼= Z[α,b]/(α2,β2)

where α and b denote the pullback of generators of K(S2k) and K(S2k) under the
projections of S2k×S2k onto its two factors. An additive basis for K(S2k×S2k)is
thus {1, α, β, αβ}.

Now let us assume we had an H-space multiplication map

µ : S2k × S2k → S2k

and let e be the identity element. The induced homomorphism of K-rings has
the form

µ∗ : Z[γ]/(γ2)→ Z[α,β]/(α2,β2).

We claim
µ∗(γ) = α + β +mαβ for some integer m.

For: the composition

S2k i−→ S2k × S2k µ−→ S2k
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is the identity, where i is the inclusion onto either of the subspaces S2k × {e} or
{e}×S2k (with e the identity element of the H-space structure). The map i∗ for
i the inclusion onto the first factor sends α to γ and b to 0, so the coefficient of α
in µ∗(γ) must be 1. Similarly the coefficient of β in µ∗(γ) must be 1. This proves
the claim.

But this leads to a contradiction, since it implies

µ∗(γ2) = (α + β +maβ)2 = 2αβ 6= 0,

which is impossible since γ2 = 0.

The strategy to prove Theorem 27.2 for n even is the following: given an H-
space structure on Sn−1, we construct from it a map f : S2n−1 → Sn of Hopf
invariant one.

Let g : Sn−1 × Sn−1 → Sn−1 be a continuous map. Regard S2n−1 as

∂(Dn ×Dn) = ∂Dn ×Dn ∪Dn × ∂Dn,

and we consider Sn as the union of two disks Dn
+ and Dn

− with their boundaries
identified. Then f : S2n−1 → Sn is defined by

f(x,y) = |y|g(x,y/|y|) ∈ Dn
+ on ∂Dn ×Dn

and

f(x,y) = |x|g(x/|x|,y) ∈ Dn
− on Dn × ∂Dn.

Note that f is well-defined and continuous, even when |x| or |y| is zero, and f
agrees with g on Sn−1 × Sn−1.

Lemma 27.3. Let n ≥ 2 be an even integer. If g : Sn−1×Sn−1 → Sn−1 is an H-
space multiplication, then the associated map f : S2n−1 → Sn has Hopf invariant
±1.

Proof. Let e ∈ Sn−1 be the identity element for the H-space multiplication, and
let f be the map constructed above. In view of the definition of f it is natural
to view the characteristic map φ of the 2n-cell of Xf as a map

φ : (Dn ×Dn, ∂(Dn ×Dn))→ (Xf , S
n).

In the following commutative diagram the horizontal maps are the product maps.
The diagonal map is the external product, equivalent to the external product

K̃(Sn)⊗ K̃(Sn)→ K̃(S2n),
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which is an isomorphism since it is an iterate of the Bott periodicity isomorphism.

K̃(Xf )⊗ K̃(Xf ) // K̃(Xf )

K̃(Xf ,D
n
−)⊗ K̃(Xf , D

n
+) //

∼=

OO

φ∗⊗φ∗
��

K̃(Xf , S
n)

OO

∼=φ∗

��

K̃(Dn ×Dn, ∂Dn ×Dn)⊗ K̃(Dn ×Dn, Dn × ∂Dn) //

∼=
��

K̃(Dn ×Dn, ∂(Dn ×Dn))

K̃(Dn × {e}, ∂Dn × {e})⊗ K̃({e} ×Dn, {e} × ∂Dn)

∼=
22

By the definition of an H-space and the definition of f , the map φ restricts to a
homeomorphism from Dn×{e} onto Dn

+ and from {e}×Dn onto Dn
−. It follows

that the element a⊗ a in the upper left group maps to a generator of the group
in the bottom row of the diagram, since a maps to a generator of K̃(Sn) by
definition. Therefore by the commutativity of the diagram, the product map in
the top row sends

a⊗ a 7→ ±b
since b was defined to be the image of a generator of K̃(Xf ,S

n). Thus we have

a2 = ±b,
which means that the Hopf invariant of f is ±1. �

Theorem 27.2 is now an immediate consequence of the lemma.

27.2. Division algebra structures on Rn. The determination of which spheres
are H-spaces has the following important implications.

Theorem 27.4. Let ω : Rn×Rn → Rn be a map with two-sided identity element
e 6= 0 and no zero-divisors. Then n = 1, 2, 4, or 8.

Proof. The product restricts to give Rn − {0} an H-space structure. Since Sn−1

is homotopy equivalent to Rn − {0}, it inherits an H-space structure. Explicitly,
we may assume that e ∈ Sn−1by rescaling the metric, and we give Sn−1 the
multiplication

φ : Sn−1 × Sn−1 → Sn−1

defined by
φ(x,y) = ω(x,y)/|ω(x,y)|.

This is well-defined, since ω has no zero divisors. �
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Remark 27.5. Note that ω need not be bilinear, just continuous. it also need
not have a strict unit. All we needed is that e is a two-sided unit up to homotopy
for the restriction of ω to Rn − {0}.

In Lecture 3, we showed that there are trivializations of the tangent bundle of
the spheres S1, S3, and S7. Now we can show that there are no other spheres
with trivial tangent bundle.

Theorem 27.6. If Sn is parallelizable, i.e., if the tangent bundle τ to Sn is
trivial, then n = 0, 1, 3, or 7.

Proof. The case n = 0 is trivial. So let n ≥ 1 and assume that Sn is paral-
lelizable. Let v1, . . . , vn be a tangent vector field which are linearly independent
at each point of Sn. By the Gram-Schmidt process we may make the vectors
x, v1(x), . . . , vn(x) orthonormal for all x ∈ Sn. We may assume also that at the
first standard basis vector e1, the vectors v1(e1), . . . , vn(e1) are the standard basis
vectors e2, . . . , en+1. To achieve this we might have to change the sign of vn to
get the orientations right and then deform the vector fields near e1.

Now let φx ∈ SO(n + 1) send the standard basis to x, v1(x), . . . , vn(x). Then
the map

φ : (x,y) 7→ φx(y)

defines an H-space structure on Sn with the identity element e1 since φe1 is the
identity map and φx(e1) = x for all x. Hence n = 1, 3, or 7. �
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