
Math 231b
Lecture 28

G. Quick

28. Lecture 28: The Chern character

We have seen that singular cohomology and K-theory enjoy similar properties.
The splitting principle implies a direct connection between them which we will
describe in today’s lecture.

28.1. The Chern character. Let X be a compact Hausdorff space. We want
to define a ring homomorphism, called Chern character, from K-theory to coho-
mology.

Before we define this homomorphism we think of an assignment that sends
vector bundles to cohomology classes, the Chern classes. We need to understand
how the tensor product of line bundles behaves under Chern classes. Recall

CP∞ ' K(Z,2)

and that line bundles are classified by their Chern classes regarded as elements
of

[X,CP∞] ∼= H2(X;Z).

The tensor product of two line bundles is represented by a product map

φ : CP∞ × CP∞ → CP∞

which gives CP∞ an H-space structure. We may think of φ as an element of

H2(CP∞ × CP∞;Z) ∼= H2(CP∞;Z)⊕H2(CP∞;Z)

and this element is the sum of the Chern classes in the two copies of H2(CP∞;Z)

This shows that for two line bundles L1 and L2 over X, we have

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

Now we would like to define a ring homomorphism ch : K(X) → H∗(X;Q).
We start with the case of a line bundle L → X. We want ch to send the tensor
product to products in in cohomology. So we set

ch(L) = ec1(L) = 1 + c1(L) + c1(L)/2! + · · · ∈ H∗(X;Q),

because then

ch(L1 ⊗ L2) = ec1(L1⊗L2) = ec1(L1)+c1(L2) = ch(L1) · ch(L2).
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(If the sum defining ch(L) has infinitely many terms, it will not lie in the direct
sum but rather in the direct product of the groups H∗(X;Q). But in the main
examples, Hn(X;Q) will be zero for n sufficiently large.)

For a direct sum of line bundles E = L1 ⊕ · · · ⊕ Ln we define

ch(E) =
∑
i

ch(Li) =
∑
i

eti = n+ (t1 + · · ·+ tn) + · · ·+ (tk1 + · · ·+ tkn)/k! + · · ·

where ti = c1(Li). The total Chern class c(E) is then

c(E) = (1 + t1) · · · (1 + tn) = 1 + c1(E) + · · · cn(E)

and cj(E) = σj is the jth elementary symmetric polynomial in the ti’s.

As we saw in Lecture 25, there is a polynomial Qk with

Qk(σ1, . . . , σk) = tk1 + · · ·+ tkn.

Hence the above formula reads

ch(E) = dimE +
∑
k>0

Qk(c1(E), . . . , ck(E))/k!.

For general E, we define ch(E) by this formula.

Remark 28.1. In fact, if we want to define ch as a natural ring homomorphism
which sends “generators for spheres to generators” then we have only one chance
to do this. For, assume ch is such a map. Then for X = S2 = CP1

ch : K(S2)→ H∗(S2;Q)

the generator H − 1 is sent to a generator x in H2(S2;Q), hence H is sent to
1 + x in H∗(S2;Q). For CP∞ this implies

ch : K(CP∞)→ H∗(CP∞;Q), H 7→ 1 + x+ · · · = f(x)

where f(x) is some power series in x. Now looking at the commutative diagram

K(CP∞ × CP∞) //

ch
��

K(CP∞)

ch
��

H∗(CP∞ × CP∞;Q) // H∗(CP∞;Q)

we see that the series f must satisfy f(x+ y) = f(x) · f(y), where y is the label
for the generator of the cohomology of the other copy of CP∞. But there is only
one power series that does the job, namely f(x) = ex.
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28.2. A more formal description of ch. Let R be a any commutative ring
and consider a formal power series

f(t) =
∑
i

ait
i ∈ R[[t]].

Given an element x ∈ Hn(X;R), we let

f(x) =
∑

aix
i ∈ H∗∗(X;R),

where H∗∗(X;R) =
∏

iH
i(X;R) whose elements are considered as formal sums∑

i yi with deg(yi) = i.

Via the splitting principle we can use f to construct a natural homomorphism
of abelian monoids

f̂ : Vect(X)→ H∗∗(X;R)

For a line bundle L over X, we set

f̂(L) = f(c1(L)).

For a sum E = L1 ⊕ · · · ⊕ Ln of line bundles over X, we set

f̂(E) =
n∑

i=1

f(c1(L)).

For a general n-plane bundle E over X, we let f̂(E) be the unique element of
H∗∗(X;R) such that

p∗(f̂(E)) = f̂(p∗(E)) ∈ H∗∗(F (E);R).

More explicitly, writing p∗E = L1 ⊕ · · ·Ln, we know by the definition of Chern
classes ∏

1≤k≤n

(x− c1(Lk)) = 0.

This implies that

ck(p∗E) = p∗(ck(E)) = σk(c1(L1), . . . , c1(Ln))

is the kth elementary symmetric polynomial in the c1(Lk). Likewise, we see that

f̂(p∗E) is a symmetric polynomial in the c1(Li) and can therefore be written as a
polynomial in the elementary symmetric polynomials. Applying this polynomial
to the ck(E) gives the element f̂(E) ∈ H∗∗(X;R). For a vector bundle E over
a non-connected space X, we add the elements obtained by restricting E to
the components of X. By the naturality property of K(X), f̂ extends to a
homomorphism

f̂ : K(X)→ H∗∗(X;R).
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There is also an analogous multiplicative extension f̄ of f that starts from the
definition

f̄(E) =
n∏

i=1

f(c1(Li))

on a sum E = L1 ⊕ · · · ⊕ Ln of line bundles.

As an example, we look at the following special case.

Lemma 28.2. For any R, if f(t) = 1 + t, then f̄(E) = c(E) is the total Chern
class of E.

Proof. For a line bundle, we have f̄(L) = 1 + c1(L) = c(L), and for a sum
E = L1 ⊕ · · · ⊕ Ln of line bundles we get

f̄(E) =
∏
i

(1 + c1(Li)) = 1 + c1(E) + · · ·+ cn(E)

since ck(E) is equal to the kth elementary symmetric function in the c1(Li)’s.
Hence if E is an arbitrary bundle, then

f̄(E) = 1 + c1(E) + · · ·+ cn(E) = c(E).

�

The example we are interested in is the Chern character which gives rise to an
isomorphism between rationalized K-theory and rational cohomology.

Definition 28.3. For R = Q and f(t) = et =
∑

i t
i/i!, we define the Chern

character
ch(E) ∈ H∗∗(X;Q) by ch(E) = f̂(E).

It is clear that both descriptions of ch agree.

28.3. Properties of ch. This allows us to prove the following result.

Proposition 28.4. The Chern character is a ring homomorphism

ch : K(X)→ H∗∗(X;Q).

Proof. By the splitting principle and the construction of ch it suffices to check
this when E1 and E2 are sums of line bundles. In this case we have

ch(E1 ⊕ E2) = ch(⊕i,jLij) =
∑

ec1(Lij) = ch(E1) + ch(E2)

and

ch(E1⊗E2) = ch(⊕j,k(L1j⊗L2k)) =
∑

ch(L1j⊗L2k) =
∑

ch(L1j)·ch(L2k) = ch(E1)·ch(E2).

�
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Proposition 28.5. For n ≥ 1, the Chern character maps K̃(S2n) isomorphically
onto the image of H2n(S2n;Z) in H2n(S2n;Q).

Proof. Since ch(x⊗(H−1)) = ch(x) ·ch(h−1) we have the commutative diagram

K̃(X)
∼= //

ch
��

K̃(S2 ∧X)

ch
��

H̃∗(X;Q)
∼=// H̃∗+2(S2 ∧X;Q)

where the upper map is the external tensor product with H − 1, and the lower
map is the product with

ch(H − 1) = ch(H)− ch(1) = 1 + c1(H)− 1 = c1(H),

which is a generator of H2(S2;Z). Hence the lower map is an isomorphism too
and even restricts to an isomorphism with Z-coefficients. Taking X = S2n, the
result follows by induction on n, starting with the trivial case n = 0. �

Corollary 28.6. A class in H2n(S2n;Z) occurs as a Chern class cn(E) if and
only if it is divisible by (n− 1)!.

Proof. For vector bundles E → S2n we have c1(E) = · · · = cn−1(E) = 0, so

ch(E) = dimE+Qn(c1, . . . ,cn)/n! = dimE±ncn(E)/n! = dimE±cn(E)/(n−1)!

by the recursive formula for Qn we mentioned in Lecture 25

Qn = σ1Qn−1 − σ2Qn−2 + · · ·+ (−1)n−2σn−1Q1 + (−1)n−1nσn.

�

Now since Chern classes are in even degrees, the image of ch lies in the sum
of the even degree elements in H∗∗(X;Q) which we denote by Heven(X;Q). We
define Hodd(X;Q) to be the sum of the odd degree elements. Then we can
extend ch to Z/2-graded reduced cohomology by defining ch on K̃1(X) to be the
composite

K̃1(X) ∼= K̃(ΣX)
ch−→ H̃even(ΣX;Q) ∼= H̃odd(X;Q).

Then we can prove the following fundamental result.

Theorem 28.7. For any pointed finite CW-complex X, ch induces an isomor-
phism

K̃∗(X)⊗Q
∼=−→ H̃∗∗(X;Q).
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Sketch of the proof. We think of both the source and the target as Z/2-graded.
The Proposition 28.5 implies the conclusion when X = Sn for any n. The cru-
cial point is that the map of the theorem is part of a natural transformation of
cohomology theories. Then the assertion follows from the result for X = Sn, the
five lemma and induction on the number of cells of X.
More explicitely, the case of a cell complex with a single cell is trivial. Then if X
is obtained from a subcomplex A by attaching a cell, then we get a sequence

X/A→ S1 ∧ A→ S1 ∧X → (S1 ∧X)/(S1 ∧ A)→ S2 ∧ A.
Applying the Chern character to this sequence yields a commutative diagram
of five-term exact sequence (tensoring with Q is exact). Now the spaces X/A
and (S1 ∧ X)/(S1 ∧ A) are spheres, and both S1 ∧ A and S2 ∧ A are both cell
complexes with the same number of cells as A (we collapse the suspension or
double suspension of a 0-cell). The five-lemma gives us the result for S1 ∧ X.
Then we obtain the result for X by replacing X with S1∧X in the above argument
and using that ch commutes with double suspension. �
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