
Math 231b
Lecture 29

G. Quick

29. Lecture 29: The e-invariant

Today we are going to elaborate a little bit more on the construction we used
for the Hopf invariant one problem. It turns out that this picture contains much
more information.

29.1. Getting information about maps between spheres. Let us look at
a slight variation of the way we defined the Hopf invariant using K-theory. For
m,n ≥ 1, let

f : S2n+2m−1 → S2n

be a pointed map. Let

X = Xf = S2n ∪f e2n+2m

be the mapping cone of f , i : S2n ↪→ X be the inclusion, and

π : X → X/S2n ∼= S2n+2m

be the map that collapses S2n. We would like to measure the extend to which f
is not null, i.e., not homotopic to a constant map. Therefor we would like to use
our favorite (at least for the moment) cohomology theory, complex K-theory.

As in Lecture 26, the sequence

S2n+2m−1 f−→ S2n i−→ S2n ∪f e2n+2m π−→ S2n+2m

(or rather the pair (X,S2n)) induces a long exact sequence in reduced K-theory.
Since the K-theory of spheres is concentrated in even degrees, the K-theory
degree of f , i.e., K̃(f), is zero. For our goal to measure the extend to which f is
not null this is bad news. But there is still some more information to exploit.

Since K̃(f) = 0, we obtain a short exact sequence

(1) 0→ K̃(S2n+2m)
π∗−→ K̃(S2n ∪f e2n+2m)

i∗−→ K̃(S2n)→ 0.

We know that the outermost groups are the integers and the group in the
middle is an extension. We would like to understand how far from the trivial
extension the sequence (1). In order to make this more precise we need to think
a little bit more about what kind of groups we are talking about.
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We have already noticed that the outermost groups in (1) are the integers. But
we also know that the Adams operation ψk acts on K̃(S2n) by kn and it acts on
K̃(S2n+2m) by kn+m. So let us write Z(n) for the first group and Z(n + m) for
the second. We want to consider them in some category of “abelian groups with
Adams operations”.

Let us make an informal definition:

Definition 29.1. An abelian group with Adams operations is an abelian group A
together with morphisms ψk : A→ A, for k ∈ Z, which commute with each other
and satisfy ψ`ψk = ψk`.

But we can say even a little bit more about the K-theory groups. In the
previous lecture we defined the Chern character

ch : K(Y )→ ⊕nH2n(Y ;Q)

which becomes an isomorphism after tensoring K(Y ) with Q (assuming Y is a fi-
nite cell complex). The splitting principle now tells us that the Adams operations
on cohomology are given by

ψk = kn on H2n(Y ;Q).

To check this, write a bundle E as a sum of line bundles. Then we only need to
compute the effect of ψk on the 2nth component chn of ch(L) for a line bundle.
Then we have ψk(L) = Lk, and hence

chn(ψk(L)) = chn(Lk) = (c1(Lk))n/n! = (kc1(L))n/n! = knc1(L)n/n! = knchn(L).

Hence the action of the Adams operations is semisimple on rational K-theory.
In other words, if A is in the image of the K-theory functor, then A⊗Q is a big
sum of copies of Q(n).

29.2. The e-invariant as an extension. Now let us get back to the geometric
situation. The short exact sequence (1) corresponds to an element e(f) (“e” for
extension) in

Ext1(Z(n),Z(n+m))

where the Ext is in the category of abelian groups together with Adams opera-
tions.

What can we say about this group Ext1(Z(n),Z(n + m))? The short exact
sequence

0→ Z(n+m)→ Q(n+m)→ Q/Z(n+m)→ 0

induces a long exact sequence of Ext-groups

Hom(Z(n),Q(n+m))→ Hom(Z(n),Q/Z(n+m))→ Ext1(Z(n),Z(n+m))→ Ext1(Z(n),Q(n+m)).
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Lemma 29.2. For m 6= 0, the two outermost groups Hom(Z(n),Q(n+m)) and
Ext1(Z(n),Q(n+m)) are zero.

Proof. We only prove the first assertion. If there is a non-trivial homomorphism
Z(n) → Q(n + m), then 1 ∈ Z(n) is sent to some element α ∈ Q(n + m),
and thus kn would have to be sent to kn+mα which is a contradiction. Hence
Hom(Z(n),Q(n + m)) = {0}. The second assertion requires a little bit more
work. Since the discussion is more philosophical for the moment, we skip the
proof. �

As a consequence of the lemma we get an isomorphism

Hom(Z(n),Q/Z(n+m)) ∼= Ext1(Z(n),Z(n+m)).

The group Hom(Z(n),Q/Z(n+m)) is a subgroup of Q/Z and consists of things
compatible with the Adams operations.

In order to understand this group a bit more, let us spell out what we know.
A homomorphism

Z(n)→ Q/Z(n+m)

is determined by where it sends 1 ∈ Z(n). Let us call the image x ∈ Q/Z(n+m).
Then x has to satisfy a condition in order to make the map a homomorphism of
abelian groups with Adams operations. Namely, for all k, we must have

(kn+m − kn) · x = 0 ∈ Q/Z,
because this expresses the compatibility with ψk. This means that the denomi-
nator of x must divide all the numbers (kn+m − kn) for all k.

In other words, the group Ext1(Z(n),Z(n+m)) is cyclic of order

the greatest common divisor of kn(km − 1) for all k.

Hence we should calculate this greatest common divisor. There is a nice answer
for it. But before we do this let us make things a bit more concrete. We should
also think about the specific element in Ext1(Z(n),Z(n + m)) that sequence (1)
produces.

29.3. The e-invariant as an element in Q/Z. Let i2n be a generator of K̃(S2n)
and i2n+2m be a generator of K̃(S2n+2m). Choose an element

a ∈ K̃(S2n∪fe2n+2m) such that i∗(a) = i2n and let b = π∗(i2n+2m) ∈ K̃(S2n∪fe2n+2m).

Then for any k, we have
ψk(a) = kn · a+ µk · b.
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Since the Adams operations commute, we must have

ψk(ψ`(a)) = ψk(`na+µ`b) = `nkna+`nµkb+k
n+mµ`b = `nkna+knµ`b+`

n+mµkb = ψ`(ψk(a))

and hence
kn(km − 1)µ` = `n(`m − 1)µk

for any k and `. This shows us that the rational number

e(f) :=
µk

kn(km − 1)
∈ Q.

is independent of k. But it might depend on our choice of a. If we change a by
a multiple of b, then e(f) is changed by an integer. (For a′ = a + p · b, we get
e′(f) = e(f) + p.) Thus e(f) is well-defined as an element of Q/Z.

Finally, recalling where we started we see that we have produced an assignment

(f : S2n+2m−1 → S2n) 7→ e(f) ∈ Q/Z.

Remark 29.3. 1. The map e is called the e-invariant. It plays an important role
in understanding the structure of the (stable) homotopy groups of the sphere. To
get further into this story we introduce in the next lecture the J-homomorphism.
2. That e(f) is an element in Q/Z fits well with our discussion above. To
determine an element in Hom(Z(n),Q/Z(n + m)) we needed to determine the
image of 1 in Q/Z(n+m).

Lemma 29.4. If f ∼ g, then e(g) = e(f), i.e., e induces a map

e : π2n+2m−1(S2n)→ Q/Z.

Proof. This follows from applying the functor K̃ to the diagram

S2n+2m−1 f //

id
��

S2n i //

id
��

S2n ∪f e2n+2m π //

��

S2n+2m
Σ(f)

//

id
��

S2n+1

id
��

S2n+2m−1 g // S2n i′ // S2n ∪g e2n+2m π′ // S2n+2m
Σ(g)

// S2n+1.
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