Math 231b Lecture 31

G. Quick

31. Lecture 31: The image of the J-homomorphism

The stable J-homomorphism $J \colon \pi_k(O) \to \pi_k(S^0)$ is an important tool to produce interesting maps between spheres. Last time we also considered its complex analogue

$$J_{\mathbb{C}} \colon \pi_k(U) \to \pi_k(O) \to \pi_k(S^0)$$

which is a little bit easier to handle. Today we start to prove the following great result:

Theorem 31.1. If $f: S^{2k} \to BU$ represents a generator x_{2k} in $\pi_{2k}(BU)$, then

$$e(J_{\mathbb{C}}f) = \pm B_k/k$$

where B_k is the kth Bernoulli number defined by the power series

$$\frac{x}{e^x - 1} = \sum_{k} \frac{B_k x^k}{k!}.$$

Hence the image of J in $\pi_{2k-1}(S^0)$ has order divisible by the denominator of B_k/k (that is the denominator when we take B_k/k in reduced form).

Before we start let us think a bit more about the maps in question. We can rewrite $J_{\mathbb{C}}$ as

$$\pi_{m-1}U = \pi_m BU \cong \tilde{K}^0(S^m) \to \pi_{m-1}(S^0)$$

and it factors through the real J-homomorphism

$$\pi_{m-1}O = \pi_m BO \cong KO^0(S^m) \to \pi_{m-1}(S^0)$$

where $\tilde{KO}^0(S^m)$ denotes the real K-theory of S^m .

The groups $\pi_{m-1}U$ alternate between being \mathbb{Z} and 0: if m is even, then we get \mathbb{Z} ; if m is odd, then we get 0:

The homotopy groups $\pi_{m-1}O$ of O show an 8-fold periodicity:

$$m$$
 1 2 3 4 5 6 7 8 $\pi_{m-1}O$ $\mathbb{Z}/2$ $\mathbb{Z}/2$ 0 \mathbb{Z} 0 0 0 \mathbb{Z} .

The map

$$\mathbb{Z} \cong \pi_{m-1}U \to \pi_{m-1}O \cong \mathbb{Z}$$

is an isomorphism when $m \equiv 4 \mod 8$ and is multiplication by 2 when $m \equiv 0 \mod 8$. (One can see this by looking at the composite $\pi_m BU \to \pi_m BO \to \pi_m BU$.)

We formulated our theorem in terms of the complex J-homomorphism, because it makes things easier. But from the table of $\pi_{m-1}BO$ we see immediately that the J-homomorphism is zero when m is odd.

Moreover, the cost of working with complex rather than real K-theory is an overall factor of two, i.e., by computing

$$\pi_{2k-1}U \xrightarrow{J_{\mathbb{C}}} \pi_{2k-1}S^0 \xrightarrow{e_{\mathbb{C}}} \mathbb{Q}/\mathbb{Z}$$

we get twice the value of the real e-invariant $e_{\mathbb{R}}$ of the real J-homomorphism of the generator of real K-theory.

The theorem tells us that if $x_{2n} \in \pi_{2n}BU$ is a generator, then $e_{\mathbb{C}}(J_{\mathbb{C}}(x_{2n})) = \frac{B_n}{n}$. Then one can deduce from the above discussion the following result.

Corollary 31.2. If $y_{4n} \in \pi_{4n}BO$ is a generator, then $e_{\mathbb{R}}(J_{\mathbb{R}}(y_{4n})) = \frac{B_{2n}}{4n}$.

31.1. Thom complexes and the J-homomorphism. The initiating idea for the proof of the theorem is based on the following very important fact. If we want to show that a map of spheres is nontrivial, we have to make computations in the mapping cone. When a map is in the image of J, we have a lot of information about this mapping cone: it is actually a Thom complex.

Proposition 31.3. Let ξ be an n-dimensional complex vector bundle over S^{2k} classified by a map

$$\xi \colon S^{2k} \to BU(n).$$

The Thom complex of ξ is $S^{2n} \cup_{J\xi} e^{2n+k}$.

Proof. Since $\pi_{2k}(BU(n)) \cong \pi_{2k-1}(U(n))$, there is a map

$$f \colon S^{2k-1} \to U(n)$$
.

We consider f as a clutching function for ξ . In fact, we can identify ξ with the bundle ξ_f obtained from $D^{2k} \times \mathbb{C}^n \coprod \mathbb{C}^n$ by identifying

$$(x,v) \sim f_x(v)$$
 for $x \in \partial D^{2k}$.

Restricting to the unit disk bundle $D(\xi_f)$ we have $D(\xi_f)$ expressed as a quotient of $D^{2k} \times D^{2n} \coprod D^{2n}$ by the same relation. The quotient $T(\xi_f) = D(\xi_f)/S(\xi_f)$ contains a sphere $S^{2n} = D^{2n}/\partial D^{2n}$, coming from the second copy of D^{2n} , and $T(\xi_f)$ is obtained from S^{2n} by attaching a cell e^{2k+2n} with characteristic map the quotient map

$$D^{2k} \times D^{2n} \to D(\xi_f) \to T(\xi_f).$$

The attaching map of the cell is precisely J(f), since it is given by

$$(x,v) \mapsto f_x(v) \in D^{2n}/\partial D^{2n}$$
 on $\partial D^{2k} \times D^{2n}$

and maps all of $D^{2k} \times \partial D^{2n}$ to the point $\partial D^{2n}/\partial D^{2n}$.

If we want to compute $eJ_{\mathbb{C}}(f)$ we need to compute ch(a) for an element

$$a \in \tilde{K}(X_{Jf}) = \tilde{K}(T_{\xi})$$
 which restricts to a generator in $\tilde{K}(S^{2n})$

where S^{2n} is a fiber of $D(\xi)$ as in the previous proof. A class in $\tilde{K}(T(\xi))$ which restricts to a generator for each sphere S^n coming from a fiber of ξ is called a *Thom class* of ξ . Hence we need to understand the Chern character of Thom classes in K-theory.