
Math 231b
Lecture 32

G. Quick

32. Lecture 32: The image of the J-homomorphism and Thom
classes

We are still on the way to prove the following theorem on the complex J-
homomorphism

JC : πk(U)→ πk(O)→ πk(S
0).

Theorem 32.1. If x2k in π2k(BU) is a generator, then

e(JCf) = ±Bk/k

where Bk is the kth Bernoulli number defined by the power series

x

ex − 1
=

∑
k

Bkx
k

k!
.

Hence the image of J in π2k−1(S
0) has order divisible by the denominator of Bk/k

(that is the denominator when we take Bk/k in reduced form).

32.1. Thom classes and the Thom isomorphism in K-theory. We saw last
time that if E is an n-dimensional complex vector bundle over S2n classified by
a map

f : S2k → BU

then the Thom complex of ξ is S2n ∪Jf e2n+k.

Hence if we want to compute eJC(f) we need to compute ch(a) for an element

a ∈ K̃(XJf ) = K̃(Tξ) which restricts to a generator in K̃(S2n)

where S2n is a fiber of D(ξ) as in the previous proof. A class in K̃(T (ξ)) which
restricts to a generator for each sphere Sn coming from a fiber of ξ is called a
Thom class of ξ. Hence we need to understand the Chern character of Thom
classes in K-theory.

We have seen Thom classes before. But let us briefly recall the basics theory.
Let E be a complex vector bundle of dimension n over the compact Hausdorff
space X. Let XE := T (E) = D(E)/S(E) denote the Thom space of E over X.
The Thom class is an element

U ∈ K̃0(XE)
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which restricts to a generator under the restriction map

K̃0(XE)→ K̃0((XE)x) ∼= K̃0(E+
x ) ∼= Z

for every x ∈ X, where E+
x denotes the one-point compactification of the fiber Ex

(it’s a 2n-sphere whence the last isomorphism). There are several natural ways
to get such a Thom class. One construction uses the projective bundle formula.

First we remark that we can identify XE with P(E ⊕ 1)/P(E). Let V be the
vector space given by the fiber Ex over some x ∈ X. Given a line ` through
the origin in V ⊕ 1 which does not lie in V , there is a unique point v in V such
that (v, 1) ∈ V ⊕ 1. This defines a map P(V ⊕ 1)→ V . The lines that are in V
correspond to the point at ∞ in the fiber of the Thom complex of V . Hence we
have checked on each fiber that we have an isomorphism

XE = P(E ⊕ 1)/P(E).

Now it is easier to produce the Thom class on the right hand side, because we
know that we have the tautological line bundle L over the projective space.

Let L be the canonical line bundle over P(E⊕ 1). We know that K∗(P(E⊕ 1))
is the free K∗(X)-module with basis 1, L, . . . , Ln. Restricting to P(E) ⊂ P(E⊕1),
we see that K∗(P(E)) is the free K∗(X)-module with basis (the restrictions to
P(E) of) 1, L, . . . , Ln−1. So we have a short exact sequence

0→ K̃∗(XE)→ K∗(P(E ⊕ 1))
ρ−→ K∗(P(E))→ 0.

The map ρ sends Ln to Ln. But in K∗(P(E)) we have the relation∑
i

(−1)iλi(E)Ln−i = 0

where the λi(E) are the Chern classes of E in K∗(X) by definition. The class
UK ∈ K̃0(XE) that maps to the nonzero element∑

i

(−1)iλi(E)Ln−i ∈ K0(P(E ⊕ 1))

is the Thom class of E that we were looking for.

Moreover, we get that multiplication by UK gives the Thom isomorphism

UK : K0(X) ∼= K̃0(XE)

and K̃0(XE) is a free K0(X)-module with one generator UK .

Remark 32.2. We will also sometimes identify

UK with
∑
i

(−1)iλi(E)Ln−i in K̃0(P(E ⊕ 1)).
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Note that all this makes sense for virtual bundles too, since it is an isomorphism
of modules over K0(X).

Remark 32.3. The previous discussion applies to any cohomology theory with
a projective bundle formula for complex vector bundles. In particular, it applies
to H̃even(−;Q). If x = x(E) ∈ H2(P(E ⊕ 1);Q) is an element that restricts to a
generator of H2(CPn−1;Q) in each fiber, then there is the relation∑

i

(−1)ici(E)xn−i = 0 in H∗(P(E);Q).

Hence the element
∑

i(−1)ici(E)xn−i ∈ H∗(P(E ⊕ 1);Q) comes from an element
UH ∈ H2n(XE;Q) (where we use that x(E ⊕ 1) restricts to x(E)). This is
the Thom class in cohomology. In H∗(P(E ⊕ 1);Q) we can identify UH with∑

i(−1)ici(E)xn−i. Then we get UH ·x = 0 in H∗(P(E⊕ 1);Q), because we know
ci(E ⊕ 1) = ci(E) and hence

0 =
∑
i

(−1)ici(E ⊕ 1)xn+1−i =
∑
i

(−1)ici(E)xn+1−i = UH · x.

To prove the theorem we need to calculate ch(UK). By the splitting principle
we may assume that E = L1⊕· · ·⊕Ln splits as a sum of line bundles. The Thom
class UH =

∑
i(−1)ici(E)xn−i in P(E ⊕ 1) then factors as the product

UH =
∏
i

(x− xi) ∈ H∗(P(E ⊕ 1);Q)

where xi = c1(Li). Similarly, the Thom class in K-theory becomes

UK =
∏
i

(L− Li) ∈ K̃0(P(E ⊕ 1)).

Therefore we have

ch(UK) =
∏
i

ch(L− Li) =
∏
i

(ex − exi) = UH ·
∏
i

(
exi − ex

xi − x
).

Since UH · x = 0, we can set x = 0 and simplify this expression to

ch(UK) = UH ·
∏
i

(
exi − 1

xi
).

Since the Thom isomorphism ϑ : H∗(X;Q)→ H∗(XE;Q) is given by multipli-
cation with UH , we get the formula

ϑ−1ch(UK) =
∏
i

(
exi − 1

xi
) ∈ H∗(X;Q).
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Dealing with such power series becomes easier when we take the logarithm.

There is a power series expansion for log( e
y−1
y

) of the form
∑

k ck
yk

k!
for some

coefficients ck since the function ey−1
y

is nonzero at 0. Then we can have

log ϑ−1ch(UK) = log(
∏
i

(
exi − 1

xi
)) =

∑
i

log(
exi − 1

xi
) =

∑
i,k

ck
xki
k!

=
∑
k

ckch
k(E)

where chk(E) is the component of ch(E) in dimension 2k. The last equation
uses the fact that E is the sum of line bundles and the definition of the Chern
character for line bundles. The splitting principle then tells us that the formula
also holds for arbitrary E.

We need to calculate the coefficients ck. Therefor we differentiate both sides of∑
k

cky
k/k! = log(

ey − 1

y
) = log(ey − 1)− log y.

This yields ∑
k cky

k−1/(k − 1)! = ey

ey−1
− y−1

= 1 + 1
ey−1
− y−1

= 1− y−1 +
∑

k≥0Bky
k−1/k!

= 1 +
∑

k≥1Bky
k−1/k!

where the last equation follows from the fact that B0 = 1. Thus we obtain

ck = Bk/k for k > 1 and 1 +B1 = c1.

Since B1 = −1/2, we get c1 = 1/2 and c1 = −B1/1.

32.2. The proof of Theorem 32.1. Now we apply the discussion to the n-
dimensional bundle E → S2k corresponding to the element x2k ∈ π2kBU . We
choose UK ∈ K̃0(XJf ) = K̃0((S2k)E) as the element mapping to a generator in

K̃0(S2k) (changing signs if necessary). We know

ch(UK) = a+ r · b ∈ H∗(XJf ;Q)

and hence
ϑ−1ch(UK) = 1 + r · s

where s is a generator of H2k(S2k;Q) and r = e(JCf) in Q/Z. Hence

log ϑ−1ch(UK) = r · s
since log(1 + z) = z − z2/2 + · · · and s2 = 0. On the other hand, we have

log ϑ−1ch(UK) = ckch
k(E)

since H2j(S2k;Q) = 0 for j 6= k. Moreover, we showed in Lecture 28 that

chk(E) = s ∈ H2k(S2k;Q).
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Thus, by comparing the two formulas for log ϑ−1ch(UK) we get

e(JCf) = r = ck = ±Bk/k.

This finishes the prof of Theorem 32.1.
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